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By coupling a macroscopic mechanical oscillator to two microwave cavities, we simultaneously prepare
and monitor a nonclassical steady state of mechanical motion. In each cavity, correlated radiation pressure
forces induced by two coherent drives engineer the coupling between the quadratures of light and motion.
We, first, demonstrate the ability to perform a continuous quantum nondemolition measurement of a single
mechanical quadrature at a rate that exceeds the mechanical decoherence rate, while avoiding measurement
backaction by more than 13 dB. Second, we apply this measurement technique to independently verify the
preparation of a squeezed state in the mechanical oscillator, resolving quadrature fluctuations 20% below
the quantum noise.
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I. INTRODUCTION

While quantum mechanics exquisitely describes the
behavior of microscopic systems, one ongoing challenge
is to explore its applicability to systems of larger size and
mass. Unfortunately, quantum states of increasingly macro-
scopic objects are more easily corrupted by unintentional
measurements from the classical environment. Additionally,
even the intentional measurements from the observer
can further perturb the system [1]. In optomechanics [2],
coherent light fields serve as the intermediary between the
fragile mechanical states and our inherently classical world
by exerting radiation pressure forces and extracting mechani-
cal information. Here, we engineer a microwave cavity
optomechanical system [3] to stabilize a nonclassical steady
state of motion while independently, continuously, and
nondestructively monitoring it. By coupling the motion of
an aluminum membrane to two microwave cavities, we
separately prepare a squeezed state of motion [4] and
monitor it with a quantum nondemolition (QND) measure-
ment [5–7]. We resolve subvacuum mechanical quadrature
fluctuations, characteristic of a state that has no classical
analog [8]. The techniques developed here have direct
applications [9] in the areas of quantum-enhanced sensing
[10] and quantum information processing, and could be
further extended to more complex quantum states [11].
Reflecting light off a mechanical object induces a

momentum transfer, allowing one to control and measure
the mechanical state. When the photon scattering rate
exceeds the phonon decoherence rate, the mechanical system

becomes more strongly coupled to the photon reservoir than
to its own thermal environment. This regime is usually
obtained by embedding a mechanical resonator into an
electromagnetic cavity to increase the interaction strength
per photon [2]. Additionally, the cavity filters the density of
states available for the scattered photons, allowing control
over the ratio of Stokes and anti-Stokes scattering rates.
Importantly, the nature of the optomechanical interaction
implies that the light field interacts with both mechanical
quadratures, with fundamental consequences on the
mechanical state preparation and measurement. On one
hand, the precision on the simultaneous measurement of
both mechanical quadratures is limited by the Heisenberg
uncertainty principle [12,13]. On the other hand, the state
preparation via sideband cooling exploits the coherent
exchange of the cavity and mechanical state and is therefore
limited by the statistics of the classical light field [14–16].
Both limitations can be overcome using polychromatic

coherent light. One can address and manipulate each
mechanical quadrature differently by engineering interfer-
ence processes between their couplings to the cavity quad-
ratures. More specifically, a two-drive scheme can be used to
design a single quadrature measurement of the mechanical
oscillator, known as backaction evading [5–7]. The scheme
fulfills the requirement for a QNDmeasurement, which is an
important tool for the tomographic reconstruction of arbi-
trary quantum states. A similar scheme was proposed by
Kronwald et al. [4] to prepare a mechanical squeezed state,
following an analogous idea formulated for trapped ions
[17,18]. It was very recently implemented in optomechanical
systems [19,20]; however, the mechanical squeezing was not
independently measured, but only inferred from the output
spectrum of the squeezing operation itself. In this work, we
separate the state preparation and its read-out by coupling a
macroscopic mechanical oscillator to two microwave
cavities. We use an independent QND measurement to
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perform the tomography of a squeezed state of a macro-
scopic mechanical oscillator.

II. THEORY

Consider a cavity optomechanical system where the
position of a mechanical resonator of frequency Ωm tunes
the resonance frequency ωc of an electromagnetic cavity
[2]. Two drives are applied to the cavity, at both mechanical
sidebands ω� ¼ ωc � Ωm. The strength of each drive can
be parametrized by its scattering rate Γ� ¼ 4g20n

�=κ, where
g0 is the vacuum optomechanical coupling rate, κ is the
cavity linewidth, and n� is the number of intracavity
photons induced by each drive. Assuming a mechanical
relaxation rate Γm and the condition Γm, Γ� ≪ κ ≪ Ωm,
one can write the relations between the mechanical quad-
rature amplitudes, X̂1 and X̂2, and the amplitude and phase
quadrature of the cavity fields, Â and φ̂, reading [4]:

hX̂2
1i ¼

ΓmhX̂2
thi þ ð ffiffiffiffiffiffi

Γ−
p

−
ffiffiffiffiffiffi
Γþp

Þ2hφ̂2i
Γm þ Γ− − Γþ ; ð1Þ

hX̂2
2i ¼

ΓmhX̂2
thi þ ð ffiffiffiffiffiffi

Γ−
p þ

ffiffiffiffiffiffi
Γþp

Þ2hÂ2i
Γm þ Γ− − Γþ : ð2Þ

Here, hX2
thi ¼ 2nthm þ 1 is the variance of the mechanical

quadratures for an equilibrium thermal occupancy nthm and
hφ̂2i ¼ hÂ2i ¼ 1 are the variances of the cavity quadratures
for an ideal coherent state. For Γþ ¼ 0, corresponding to
driving only the lower sideband, one recovers the sideband
cooling limit, and at high scattering rate, Γ− ≫ Γm,
each quadrature of the mechanics is cooled to the cavity
quadratures, hX̂2

1i ¼ hφ̂2i and hX̂2
2i ¼ hÂ2i. Another limit

is Γþ ¼ Γ−, corresponding to driving symmetrically the
upper and lower sidebands. This is the case of a drive on
resonance with the cavity whose amplitude is modulated at
a mechanical frequency, performing a QND measurement
of the mechanical quadrature X̂1. Indeed, under these
conditions, Eqs. (1) and (2) read hX̂2

1i ¼ hX̂2
thi and hX̂2

2i ¼
hX̂2

thi þ ð4Γ−=ΓmÞhÂ2i. The X̂1 quadrature is unaffected by
the measurement, and the backaction from radiation pres-
sure shot noise is placed on the orthogonal quadrature X̂2.
Finally, the preparation of a squeezed state occurs in the
intermediate regime, Γþ < Γ−. The mechanical mode is
coupled, at a reduced rate Γ− − Γþ, to an effectively
squeezed microwave bath, whose minimum variance
is ð ffiffiffiffiffiffi

Γ−
p

−
ffiffiffiffiffiffi
Γþp

Þ2=ðΓ− − ΓþÞ < 1.
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FIG. 1. Device description and experimental setup. (a) False-color optical micrograph of the aluminum device (in gray) on a sapphire
substrate (blue). Centered at the bottom of the micrograph is a mechanically compliant vacuum gap capacitor. The capacitor’s electrode
is split into two plates, each shunted by a different coil inductor, giving rise to two microwave resonances. (b) Frequency space diagram.
Except for the mechanical linewidth, all the frequencies and linewidths are to scale. The microwave cavities have Lorentzian densities of
states (DOS) of width κ1=2π ¼ 1.7 MHz and κ2=2π ¼ 2.1 MHz, centered at ω1=2π ¼ 8.89 GHz and ω2=2π ¼ 9.93 GHz. These
resonance frequencies are tuned by the motion of the top plate of the capacitor, at the mechanical frequency Ωm=2π ¼ 14.98 MHz.
The red and blue dashed lines indicate the four mechanical sideband frequencies at which the cavities are driven, ω�

1;2 ¼ ω1;2 � Ωm.
(c) The circuit is placed on the cold stage of a cryogenic refrigerator (base temperature T ¼ 30 mK). Up to four strong microwave drives
and one weak microwave probe are inductively coupled to the cavities via a single port. The reflected signals and the noise emitted by
the cavities are amplified at low temperature and demodulated at room temperature.
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III. RESULTS

In order to separately prepare and read-out a mechanical
state, we engineer a microwave optomechanical system
where a single mechanical mode is coupled to two
microwave cavities. The experimental setup is shown in
Fig. 1. The circuit, made out of aluminum on a sapphire
substrate, consists of a central vacuum gap capacitor shunted
by two coil inductors [3,21]. The bottom plate of the
capacitor is split to create two cavity resonances, ω1=2π ¼
8.89 GHz andω2=2π ¼ 9.93 GHz, named, respectively, the
“measurement cavity” and the “control cavity.” The top plate
of the capacitor is mechanically compliant, with a second
harmonic mode of motion resonating at Ωm=2π ¼
14.98 MHz (see Appendix A). Its motion tunes the reso-
nance of both microwave cavities, with respective vacuum
optomechanical couplings g1=2π ¼ 145 Hz and g2=2π ¼
−170 Hz (see Appendix B). Operated at a temperature of
T ¼ 30 mK, the equilibrium mechanical thermal occupancy
is nthm ¼ 42 phonons and the mechanical relaxation rate is
Γm=2π ¼ 9.2 Hz. Both microwave cavities are strongly
overcoupled to a single measurement port, setting their
linewidths to κ1=2π ¼ 1.7 MHz and κ2=2π ¼ 2.1 MHz.
This coupling ensures that internal dissipations contribute
by less than 5% to the total linewidths, while maintaining a
strongly resolved sideband regime, Ωm=κ1;2 > 7. It also
thermalizes the cavities to the shot-noise-limited input fields,
maintaining throughout this work a thermal cavity occu-
pancy well under our measurement noise floor, nthc < 0.1.
We start by describing the QND measurement of the

mechanical oscillator, cooled close to its ground state, in
Fig. 2. A cooling drive of strength Γ−

2 ¼ 2π × 4.87 kHz ¼
529Γm is applied at the lower mechanical sideband of the
control cavity, ω−

2 ¼ ω2 − Ωm, leading to a reduced
mechanical thermal occupancy nm. Simultaneously, two
drives of equal strength, Γ−

1 ¼ Γþ
1 , are applied close to the

mechanical sidebands of the measurement cavity, acting
back on the mechanical oscillator [7] and increasing the
total occupancy to ntotm ¼ nm þ nba, where nba ¼ Γ−

1 =Γ−
2 .

Their frequencies can be optimally tuned toω�
1 ¼ ω1 � Ωm

to perform a single mechanical quadrature measurement
[QND, in gray in Figs. 2(b)–2(d)] or detuned by many
mechanical linewidths away from that optimum to measure
both mechanical quadratures [non-QND, in red in
Figs. 2(b)–2(d)]. By monitoring the driven responses of
both cavities [3,22,23], we tune very precisely the strength
of each drive and measure all the mode frequencies and
decay rates (see Appendix C). We then acquire the noise
power emitted by both cavities to extract the mechanical
state (see Appendix D). In Fig. 2(b), we fix the measure-
ment rate to Γ−

1 ¼ Γþ
1 ¼ 0.9Γ−

2 , and show the measured
spectra, normalized to mechanical units.
In the non-QND case, each drive measures both mechani-

cal quadratures, and the noise power of each thermome-
chanical sideband is proportional to ntotm or ntotm þ 1 for the
anti-Stokes and Stokes scattering, respectively [24]. Note

that this sideband asymmetry [25,26] provides a primary
calibration of the y axis, in good agreement with the
independently measured coupling strengths g1 and g2.
From each sideband, we extract the same mechanical
occupancy ntotm , shown as a function of measurement
strength in Figs. 2(c) and 2(d). The measured quantum
backaction scales ideally with the measurement strength, and
we can extrapolate a mechanical thermal occupancy of
nm ¼ 0.15� 0.05.
We now tune the frequency of the measurement drives

to the QND case. As shown in Fig. 2(b), the noise
sideband of the cooling drive is unchanged. Indeed, that
drive still measures both mechanical quadratures, access-
ing the same total mechanical occupancy as in the non-
QND measurement [see Fig. 2(d)]. On the contrary, on the
measurement cavity, the mechanical sidebands of each
drive interfere with each other when brought into the QND
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FIG. 2. Quantum nondemolitionmeasurement. (a)Measurement
schematic. A cooling drive of strength Γ−

2 ¼ 2π × 4.87 kHz ¼
529Γm is applied on the lower mechanical sideband of the control
cavity (ω−

2 ¼ ω2 − Ωm). Two drives of equal strength Γ−
1 ¼ Γþ

1

are applied close to the mechanical sidebands of the measurement
cavity. Their frequencies can be tuned to ω�

1 ¼ ω1 � Ωm to
perform a single mechanical quadrature measurement [QND, in
gray in (b)–(d)] or detuned by many mechanical linewidths away
from that optimum to measure both mechanical quadratures [non-
QND, in red in (b)–(d)]. (b) Mechanical noise spectra (normal-
ized, background subtracted), for Γ−

1 =Γ−
2 ¼ 0.9. (c),(d) Mechani-

cal occupancy extracted from the measured spectra of the two-
drives measurement (c) and cooling drive (d), for both the non-
QND case (in red) and the QND case (in gray), as a function of the
measurement strength Γ−

1 =Γ−
2 .
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case, leaving a single Lorentzian noise peak proportional
to the variance of a single mechanical quadrature given by
hX̂2

1i ¼ 2nm þ 1. The backaction has been evaded and
placed on the orthogonal quadrature, conserving the total
mechanical occupancy [see Eqs. (1) and (2)]. As expected,
the measured mechanical thermal occupancy is constant
as a function of the measurement strength, and quantita-
tively agrees with the occupancy inferred in the non-QND
case. At the measurement strength of Γ−

1 =Γ−
2 ¼ 2.44, we

can place a conservative upper bound on the residual
quantum measurement backaction, at about 0.1 quanta,
corresponding to a reduction of the backaction by more
than 13 dB. This demonstrates a QND measurement of a
single mechanical quadrature at a rate much faster than the
mechanical decoherence rate.
This measurement scheme allows us to perform the

tomography of the mechanical state, described in Fig. 3.
Indeed, we can control the generalized mechanical quad-
rature being measured, X̂Φ, by simply rotating the relative
phase between the measurement drives. As we expect the
state to be Gaussian, the measurement of the second moment
of the noise is sufficient to reconstruct its tomogram. A
mechanical state prepared by simple sideband cooling is
expected to have equal variances for each quadrature.
In Fig. 3(c), we show data for an increased cooling strength
Γ−
2 ¼2π×15.11kHz¼1643Γm and a measurement strength

Γ−
1 =Γ−

2 ¼ 0.48. As expected, the results of the QND
measurements are phase independent. We measure a
mechanical occupancy nm < 0.1, demonstrating the QND
measurement of a highly pure Gaussian state.
We now apply this same tomographic measurement to

verify the preparation of a nonclassical state of motion.
We prepare a squeezed state by adding a drive of strength
Γþ
2 at the upper mechanical sideband of the control

cavity (ωþ
2 ¼ ω2 þΩm). Again, as a squeezed state is still

Gaussian, we simply measure the variance of the mechani-
cal quadrature X̂Φ as a function of the measurement phase
to fully characterize the state, as shown in Fig. 3(c) for a
squeezing strength Γþ

2 =Γ−
2 ¼ 0.07. We resolve a minimum

quadrature variance below vacuum, hX̂2
1i ¼ 0.78� 0.08.

The spectra corresponding to the measurement of the
squeezed and antisqueezed quadratures are shown in
Fig. 3(b). Finally, in Fig. 3(d), we plot the variance of
the squeezed and antisqueezed quadratures, hX̂2

1i and hX̂2
2i,

respectively, as a function of the squeezing strength. The
solid lines in Figs. 3(c) and 3(d) are theoretical predictions
from Eqs. (1) and (2) without free parameters, in reasonable
agreement with the data at low squeezing strength. As the
strength of the squeezing is increased, our data begin to
deviate significantly from the ideal theory. While many
noise mechanisms could, in principle, degrade the mea-
sured squeezing, one plausible candidate is the variation of
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FIG. 3. Tomography of a mechanical squeezed state. (a) Measurement schematic. A pair of drives at ω�
2 ¼ ω2 �Ωm cools the

mechanical mode to a squeezed bath, while a pair of drives at ω�
1 ¼ ω1 � Ωm measures the generalized mechanical quadrature X̂Φ, given

by the tunable phase Φ, allowing for the tomographic measurement of the squeezed state. (b) Normalized noise spectra of the QND
measurement (background subtracted), for the squeezed and antisqueezed quadratures (Γ−

2 =Γ
þ
2 ¼ 0.07) in blue and yellow, respectively,

compared to a spectrum measured without squeezing (Γþ
2 ¼ 0) in gray. (c) Measured quadrature variances as a function of phase for

Γþ
2 ¼ 0 in gray and Γ−

2 =Γ
þ
2 ¼ 0.07 in green. The spectra in (b) correspond to the blue and yellow dots. (d) Squeezed and antisqueezed

quadrature variances, respectively, in blue and yellow, as a function of the squeezing strength Γ−
2 =Γ

þ
2 . The solid lines are the theoretical

predictions with no free parameters. The dashed lines are the theoretical predictions including a drift of the measurement phase of 35 deg
during the acquisition of each spectrum (see Appendix E). The inset is a zoom-in for the low squeezing strength data, on a linear scale,
where we can place the variance measured without squeezing (gray dot). In all figures, the black dotted line is the vacuum limit.
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the relative phase between the squeezing operation and the
quadrature measurement during the averaging. A model
assuming a phase variation of 35 deg reproduces the
qualitative behavior of the observed squeezing (dashed
lines). While our independent measurement of the phase
stability (see Appendix E) does not fully account for the
variation required to fit the data, it does suggest that future
experiments could benefit from improved phase stabiliza-
tion between the four pumps and the two cavity modes.
Looking forward, the introduction of stronger nonlinear-

ities, combined with reservoir engineering, would enable
the preparation of more complex quantum states [11],
further motivating the use of mechanical systems as ultra-
sensitive detectors and quantum memories [9]. We empha-
size that acquiring all the moments of the noise emitted by
the QND measurement would allow us to reconstruct an
arbitrary quantum state [27,28]. Additionally, the inherent
nonlinearity of optomechanical cavities can act as a nearly
ideal mixing element, opening routes for innovative types
of amplification [29], frequency conversion [30], and
nonreciprocal behavior [31].
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APPENDIX A: MECHANICAL MODE
STRUCTURE

The mechanical resonator in this work is a suspended
aluminum membrane fabricated following the same tech-
nique as in previous experiments [3,13,14,21,26], with two
main design modifications. First, the membrane is inten-
tionally elliptical, with a 5% difference between the major
and minor diameters. The shape of the first three mechani-
cal modes, obtained from finite element simulation, are
shown in Fig. 4. The first mode is the typical drumhead

mode used in previous works [3,13,26]. The ellipticity of
the membrane lifts the degeneracy between the second and
third modes. The geometry of the two bottom electrodes is
chosen to maximize the coupling to the second mechanical
mode, used in this experiment and shown in Fig. 4(b).
The mechanical motion of that mode tunes the capacitance
between the top electrode and each bottom electrode in an
opposite way, hence imposing the sign difference between
the vacuum optomechanical couplings g1 and g2. By
symmetry, the third mechanical mode is decoupled from
the microwave cavities.

APPENDIX B: CALIBRATIONS AND
EXPERIMENTAL DETAILS

All the drives are filtered at room temperature and
attenuated in the cryostat, ensuring that they are devoid
of excess noise at the cavities’ frequencies [26].
The intrinsic mechanical relaxation rate Γm is measured

from the mechanical ringdown time τm. In Fig. 5, we show
the measured ringdown time as a function of the strength
of a cooling drive on the control cavity, at a frequency
ω−
2 ¼ ω2 − Ωm, scattering light and damping the mechani-

cal oscillator at the rate Γ−
2 . We measure an intrinsic

ringdown time τm ¼ 17.3 ms, corresponding to a relaxa-
tion rate Γm ¼ 1=τm ¼ 2π × 9.2 Hz. A comparison with
theory (solid line) allows us to calibrate the cooling drive
strength Γ−

2 . We calibrate in a similar manner the cooling
drive strength on the measurement cavity, Γ−

1 .
The optomechanical coupling strengths for each cavity

g1;2 are calibrated from a fridge temperature sweep like in
Teufel et al. [14]. The measured values are confirmed by
the measurement of the sideband asymmetry in Fig. 2.
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FIG. 4. Mechanical mode shape. (a)–(c) Finite element simu-
lation of the out-of-plane displacement of the first three mechani-
cal modes of the aluminum membrane, and their respective
measured resonance frequencies. The mode used in the main text
is shown in (b).
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FIG. 5. Mechanical ringdown time. We measure the mechanical
ringdown time τm as a function of the strength of a cooling drive
on the control cavity, at a frequency ω−

2 ¼ ω2 − Ωm, scattering
light and damping the mechanical oscillator at the rate Γ−

2 . The
solid line is the theoretical prediction from the total damping,
Γtot ¼ Γm þ Γ−

2 . We measure an intrinsic mechanical ringdown
time of τm ¼ 17.3 ms, corresponding to a relaxation rate
Γm ¼ 1=τm ¼ 2π × 9.2 Hz.
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Finally, the cavity frequencies and linewidths, the
mechanical frequency, and every pump scattering rate
are independently measured from the driven responses
(see Appendix C).

APPENDIX C: SCATTERING PARAMETERS

Before measuring the spectra shown in Figs. 2 and 3, we
measure the driven responses of the system in the presence
of all the pump drives. They contain all the information

about our system, except for the bath temperatures, and
represent an important calibration. With up to four drives,
two cavity modes, and a mechanical mode, and with
correction coming from finite sideband resolution, the
analytic solutions for the driven responses can be cumber-
some, if not intractable. However, they can easily be solved
numerically from the linear coupled equations of motion,
following methods like in Andrews et al. [32] or Ranzani
and Aumentado [33].

0

5

8.8940 8.8941
0

1

2

9.9328

8.8940 8.8941

-40

-20

0

9.9328

(a)

Frequency [GHz]

(c)

(b)

QND

non-QND

(d)

Frequency [GHz] Frequency [GHz]

[d
B

]
or

   
   

   
[d

B
]

FIG. 6. Driven responses for the QND and non-QND meas-
urement. Data corresponding to the measurement setup in Fig. 2:
the pump scattering rates are Γ−

2 ¼ 2π × 4.87 kHz ¼ 529Γm and
Γ−
1 ¼ Γþ

1 ¼ 0.9Γ−
2 . (a), (b) Reflection coefficient R around each

cavity resonance. (c) Transmission T 0 from the upper mechanical
sideband of the red measurement drive to the lower mechanical
sideband of the blue measurement drive, as a function of the input
frequency. A signal sent at ω is received at ω − ω−

1 þ ωþ
1 .

(d) Transmission T from the upper mechanical sideband of the
red cooling drive to the upper mechanical sideband of the red
measurement drive, as a function of the input frequency. A signal
sent at ω is received at ω − ω−

2 þ ω−
1 . All the solid lines are from

the same numerical simulation.
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FIG. 7. Driven responses for the tomography of the mechanical
squeezed state. Data corresponding to the measurement setup in
Fig. 3: the pump scattering rates are Γ−

2 ¼ 2π × 15.11 kHz ¼
1643Γm, Γ−

1 =Γ−
2 ¼ 0.48, and Γþ

2 =Γ−
2 ¼ 0.07. (a), (b) Reflection

coefficient R around each cavity resonance. (c) Transmission T 0
from the upper mechanical sideband of the red measurement
drive to the lower mechanical sideband of the blue measurement
drive, as a function of the input frequency. A signal sent at ω is
received at ω − ω−

1 þ ωþ
1 . (d) Transmission T from the upper

mechanical sideband of the red cooling drive to the upper
mechanical sideband of the red measurement drive, as a function
of the input frequency. A signal sent at ω is received at
ω − ω−

2 þ ω−
1 . All the solid lines are from the same numerical

simulation.
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In Figs. 6 and 7, we show the driven responses
corresponding, respectively, to the data shown in Figs. 2
and 3. From the fit to these driven responses, we extract the
cavity frequencies and linewidths, the mechanical fre-
quency, and every pump scattering rate.

APPENDIX D: MECHANICAL SPECTRA AND
ERROR ESTIMATION

The mechanical occupancy is extracted from the total
microwave power spectral density, measured at room
temperature with a spectrum analyzer, following

PSD�½ω�
Pd

¼ 16η2κ2g20
½κ2ð1 − 2ηÞ2 þ 4Δ2�½κ2 þ 4ðΔ�ΩmÞ2�

×

�
4nΓ

Γ2 þ 4δ2
þ 4nimp

Γ

�
¼ A

Sxx
x2ZP

þ B; ðD1Þ

where PSD� is the measured power spectral density in
[W= Hz] at the upper or lower sideband of a drive, Pd is the
measured drive power in [W], Δ ¼ ωd − ωc is the drive
detuning, δ ¼ ω − ωd � Ωm is the detuning around the
mechanical sideband, ωc is the microwave cavity frequency,
Ωm is the mechanical oscillator frequency, ωd is the drive
frequency, Γ is the total mechanical linewidth, κ ¼ κint þ
κext is the total cavity linewidth, η ¼ κext=κ is the coupling
factor, and g0 is the optomechanical coupling strength. Here,
nimp is the measurement noise floor expressed in unit of
mechanical quanta. All these parameters are extracted from
the measurements described in Appendixes B and C, leaving
n as the single unknown variable, that we extract from a
Lorentzian fit of the measured noise. Its value is related to
the mechanical occupancy in the following way [24,25]: for
an anti-Stokes scattering process n ¼ ntotm (upper sideband of
a single drive), for a Stokes scattering process n ¼ ntotm þ 1
(lower sidebandof a singledrive). For theQNDmeasurement,
the mechanical sidebands of each drive interfere [7], and one
obtainsn ¼ hX̂2

Φi ¼ 2nm þ 1, effectivelymeasuring thevari-
ance of a single quadrature and avoiding the backaction.
From this measurement one can extract the apparent

mechanical displacement spectral density, Sxx, normalized
by the variance of zero-point fluctuation, x2ZP ¼
ℏ=ð2mΩmÞ, where m is the mechanical oscillator’s mass.
In Figs. 2(b) and 3(b), we show the quantity Sxx=x2ZP × Γ=4,
allowing one to read the value of n off of the maximum
value of the Lorentzian peak. We remove the noise floor B
for readability, as the noise floor differs slightly between
the control and measurement cavities.
In Figs. 2 and 3, the error bars on the data correspond to

the 90% confidence intervals, obtained from standard error
propagation. The main sources of uncertainty in our
experiment are due to, in order of greatest importance,
the error in the Lorentzian fits of the spectra, the uncertainty
in the estimation of g1;2 and, the cavities’ coupling
factors η1;2.

APPENDIX E: PHASE STABILITY OF
THE DRIVES

Maintaining stable relative phases between the four
microwave drives is a crucial challenge for the measurement
presented in Fig. 3. Indeed, a phase variation corresponds to
a rotation of the measured quadrature with respect to the
squeezed quadrature. A slow phase drift occurring during the
acquisition of a noise spectrum [like the one in Fig. 3(b)]
averages different quadratures together, and results in a
reduction of the observed squeezing.
The phase locking between the four synthesizers used

here is achieved by a common 1-GHz clock. While the
resulting phase stability obtained is much greater than for a
typical 10-MHz clock, we still observe a drift of the relative
phase between two drives of a few degrees over a minute
time scale.
A more realistic measurement of the phase stability of

all four drives is accessible via the driven response of
the device in the presence of these drives. In Fig. 8, we
show the phase of the transmission coefficient as a
function of time [measured like in Fig. 7(d)]. Over a time
comparable to the averaging time used for the spectrum
shown in Fig. 3(b), the measured phase has varied by up to
20 deg, consistent with the reduction of the squeezing
observed.
Looking forward, a better phase stability could be

achieved by (1) deriving the four drives from the same
local oscillator, (2) implementing an active feedback loop
to lock the four drives, or (3) using a phase-coherent
multichannel synthesizer.
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FIG. 8. System phase stability. (a) Measurement schematic. The
device is driven by four drives, at ω�

1;2 ¼ ω1;2 �Ωm. A probe is
applied at ω ≈ ω2 and received at ω − ω−
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1 ≈ ω1. (b) Phase

of the transmission coefficient as a function of time. (c) Histogram
of the time trace measured in (b).
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