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In contrast to classical empty space, the quantum vacuum fundamentally alters the properties of
embedded particles. This paradigm shift allows one to explain the discovery of the celebrated Lamb shift
in the spectrum of the hydrogen atom. Here, we engineer a synthetic vacuum, building on the unique
properties of ultracold atomic gas mixtures, offering the ability to switch between empty space and
quantum vacuum. Using high-precision spectroscopy, we observe the phononic Lamb shift, an intriguing
many-body effect originally conjectured in the context of solid-state physics. We find good agreement with
theoretical predictions based on the Fröhlich model. Our observations establish this experimental platform
as a new tool for precision benchmarking of open theoretical challenges, especially in the regime of strong
coupling between the particles and the quantum vacuum.
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I. INTRODUCTION

When an electron moves in the vacuum it drags a
cloud of virtual photons with it [1]. As a result, its mass
effectively increases. Since the coupling between the
electron and the electromagnetic field cannot be switched
off, it is impossible to observe the “bare” electron mass
directly. An observable effect exists for the bound electron
leading to a shift of the electronic energy levels in the
hydrogen atom, known as the Lamb shift [2–5]. Similar
effects take place in semiconductors where electrons couple
to phononic excitations [6,7], leading to a quasiparticle
known as a polaron. In these systems, the increase of the
effective mass has been observed [8]. However, a quanti-
tative measurement of the predicted phononic Lamb shift
[9,10], which is defined for an electron bound to a donor
ion, is still missing. Progress is hindered by uncontrolled
disorder effects in such solid-state systems [11].
Here, we realize a model system for such a phononic

quantum vacuum based on a strongly imbalanced mixture
of ultracold atomic gases. Imbalanced Fermi gases already
allowed for the observation of the Fermi polaron [12–15] and
direct measurement of its increased effective mass [15] via
oscillations in a weak optical trap. To observe the phononic
Lamb shift, we immerse the particles of the minority species
in a weakly confined Bose-Einstein condensate (BEC),

which realizes the phononic vacuum. In analogy to the
electron bound to a donor ion, we additionally localize the
particles of the minority species in a tight optical trap. By
removing the BEC this system allows for switching off
the quantum vacuum and with that to directly compare the
dressed particle to the bare one, a feature that does not exist
in experimental tests of quantum electrodynamics (QED)
[16,17] and semiconductor systems.
We observe the phononic Lamb shift directly by high-

resolution spectroscopy of the two lowest energy levels of
the bound particle employing motional Ramsey spectros-
copy [18], which provides improved resolution compared
to other previously demonstrated spectroscopic techniques
[15,19–21]. In this method, we measure the relative energy
shift of particles confined in an approximately harmonic
potential by letting them oscillate. For weak confinement
we expect a slow down of oscillations due to the increased
effective mass, which is computed for free particles; see
Fig. 1(a). However, the confinement effects go far beyond
this simple effective mass concept and have to be explicitly
taken into account. We term the deviation between these
two corrections phononic Lamb shift. Importantly, it
can even lead to an increase of oscillation frequency as
observed in our experiment. For our weakly interacting
system the phononic Lamb shift is well described within
the Fröhlich model [22–25] and can be computed with
well-controlled perturbative methods.

II. EXPERIMENTAL SETUP

In our experiment, a BEC of about 106 sodium atoms and
few 103 to several 104 lithium atoms are both trapped by the
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same two beam optical dipole trap (ODT) at a wavelength of
1064 nm, as sketched in Fig. 1(b) [26]. The mean trapping
frequency for 23Na is ω̄ ¼ 2π × 150 Hz. The temperature of
the sample is about 350 nK. We can choose to work with
fermionic 6Li as well as bosonic 7Li at mean trapping
frequencies of ω̄¼2π×340Hz for 6Li and ω̄¼2π×310Hz
for 7Li. The interspecies interaction strength is attractive
for fermionic 6Li (aPV ¼ −75a0) [27] and repulsive for
bosonic 7Li (aPV ¼ þ21a0), with a0 being the Bohr radius.
We use the subscript P for all quantities related to lithium
particles, while the variables describing the quantum vacuum
created by the sodium condensate carry the subscript V. The
intraspecies interaction in Li is negligible, as fermions at low
temperatures do not scatter and the intraspecies scattering
length for the bosons is 7a0 [28].
An additional optical lattice close to the D-line tran-

sitions for lithium (λres;Li ≈ 671 nm) imposes a very strong
confinement in one direction for lithium. It consists of
two intersecting laser beams, leading to a periodicity of
dlat ¼ 1.65 μm and a typical depth of VP=h ≈ 78 kHz for
6Li (VP=h ≈ 81 kHz for 7Li), where h is the Planck
constant. This corresponds to an energy gap between the
first and second energy band of ω0=2π ¼ 27.3 kHz for 6Li
(ω0=2π ¼ 26.2 kHz for 7Li). Because of the depth of the
potential and the large lattice spacing, tunneling between
lattice sites can be neglected and the minima can be treated
as independent harmonic oscillators with trapping fre-
quency ω0, resulting in multiple realizations of the experi-
ment in a single experimental cycle.

Given the large detuning from the D-line transitions of
sodium (λres;Na ≈ 589 nm), the depth of the optical lattice
(VV=h < 0.5 kHz) is much weaker for this species and
leads only to weak modulation of the BEC with a chemical
potential of μV=h ≈ 5.5 kHz.

III. PHONONIC LAMB SHIFT FOR
FERMIONIC PARTICLES

First, we discuss the case of fermionic 6Li particles in
order to be as close as possible to the conventional Lamb
shift. Our goal is the measurement of the energy difference
ω ¼ E1 − E0 between the particle energies in the ground
and the first excited states of the harmonic oscillator. We
perform the measurement both in the empty space, where
the BEC is absent, and with the quantum vacuum in place.
For the symmetric superposition of the ground and excited
states, ω can be extracted from the phase ϕ ¼ ωt during a
free evolution with duration t. This is the idea behind the
motional Ramsey sequence we employ here [18].
After initial preparation in the ground state of the

harmonic oscillator, we create a coherent superposition
in the two lowest energy states of the harmonic oscillator by
shaking the optical lattice. The resulting Rabi frequency is
1.4 kHz [29], and by coupling the states for 187 μs, an
equal superposition of ground and excited state is created
(π=2 pulse). Figure 2(b) shows a Rabi cycle, which we
use for the calibration of the excited fraction η. In the
subsequent time evolution, the excited motional state
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FIG. 1. Experimental setup. (a) Particles are trapped in a harmonic potential with trapping frequency ω0. The coupling of the particles
to the quantum vacuum causes energy shifts of the particles’motional states. For a free particle, it leads to a mass increase, which would
manifest itself to a smaller energy difference between the harmonic trap levels, as shown in the second column of the inset. For a trapped
particle, the effective mass approximation breaks down and the energy shift has to be calculated from the self-energy in the confined
geometry. The difference between the complete calculation and the effective mass approximation is termed phononic Lamb shift, and it
can be so substantial that the interaction with the vacuum actually leads to an increased energy difference compared to the bare case, as
shown in the third column of the inset. (b) Scheme of the experimental setup. The two atomic species are trapped in a single dipole trap
(red beams). The lithium atoms, which act as the particles in this setup, experience additionally a strong confinement by a deep small-
angle optical lattice (green beams), whose minima can be described by a harmonic potential with trapping frequency ω0. Inset: This
setup results in a multitude of independent lithium clouds (blue) embedded in a large sodium Bose-Einstein condensate (yellow), which
acts as the quantum vacuum.
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accumulates a phase with respect to the ground state
corresponding to its energy difference.
The accumulated phase difference can be mapped onto

an observable population difference by applying an addi-
tional π=2 pulse. In our system of periodically arranged
harmonic oscillators, the population difference can be
accessed by the band-mapping technique, where the
quasimomentum in the lattice is mapped onto the free
expansion of an atomic cloud [30–32]. While adiabatically
reducing the lattice depth in 2 ms with a time constant
τ ¼ 0.8 ms, the longitudinal confinement through one
beam of the ODT is turned off, allowing the atoms to
expand in an optical waveguide along the lattice direction.
After 10 ms of evolution an absorption image is taken. With

this technique a sufficient optical density can be obtained
even for very low lithium atom numbers. To extract the
population of the harmonic oscillator states, the absorption
images are integrated transversally to the lattice direction,
as shown in Fig. 2(c). In order to extract the relative
occupation of the three lowest states, atoms in the areas of
the three Brillouin zones are counted and the ratios are
calculated.
The second pulse is shifted in time to record the phase of

the oscillation [33], as shown in Fig. 2(d) (red curve). To
measure the effect of the vacuum on the frequency, the
sodium BEC is removed by a resonant light pulse before
the Ramsey sequence starts. This light pulse does not have
any observable effect on the Li sample. We clearly observe
a fringe shift [Fig. 2(d), blue curve] in the absence of the
BEC. The frequency change is given by Δω ¼ Δϕ=Δt,
where Δt is the total evolution time, including the time
of the state coupling (pulses). The observed sign of the
phase shift Δϕ corresponds to an increase of the energy
difference.
For a quantitative comparison, care has to be taken

since the employed near-resonance lattice for lithium
also induces a weak modulation of the sodium BEC, as
shown in the upper row of Fig. 3. In the Thomas-Fermi
approximation, the modulation of the BEC density is
ρmod ¼ ½μV − VVðxÞ�=gV , with gV ¼ 4πℏ2aV=mV , where
ℏ ¼ h=2π, mV is the mass of the sodium atoms, and
aV ¼ 54.54a0 is the intraspecies scattering length [34]. It
modifies the effective confinement of the minority species
due to mean-field interactions between the two species.
These interactions lead to the additional effective potential
for the particles. The resulting potential for the lithium
atoms is, therefore, a combination of the optical lattice
and the modulated BEC, VP;effðxÞ¼VPðxÞ−gPVρmod, with
gPV ¼ 2πℏ2aPV=mr, mr is the reduced mass of the system;
see, e.g., Refs. [23,35–37]. The band gap between the first
and excited band in the effective potential is ωeff . Within
the approximation that the sites are independent harmonic
oscillators, the relative shift due to the lattice is then

δlatt ¼
ωeff − ω0

ω0

≃ −
1

2

gPV
gV

VV

VP
: ð1Þ

These effects are isolated by performing the Ramsey
spectroscopy at different detunings of the lattice, as shown
in the lower left-hand panel of Fig. 3. While going closer
to the lithium resonance, the potential depth VP is kept
constant by reducing the light intensity accordingly.
Since the transition frequency for the background BEC
is far detuned, the corresponding potential VV is reduced
and the modulation suppressed. We observe that the
frequency shifts have a finite offset at the interpolated
limit of zero modulation, which we denote with δself . The
fit yields for fermionic 6Li (blue dots) the relative shift
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FIG. 2. Motional Ramsey spectroscopy. (a) The sequence of
total time t consists of a π=2 pulse creating an equal superposition
between the ground and the excited state and a subsequent free
evolution during which a phase ϕ is accumulated. A second π=2
pulse maps the phase shift on the population η. (b) Shaking the
optical lattice couples the motional states of the lithium particles
and allows the preparation of a superposition of the two lowest
motional states. (c) Changing the evolution time t results in a
Ramsey fringe in the population of the excited state, which is read
out via band mapping on the first and second Brillouin zone.
Typical optical density (OD) profiles of the resulting absorption
images are depicted with a field of view of 1176 μm. The dashed
lines mark the limit of the Brillouin zones. (d) An exemplary
interference fringe of 6Li after an evolution time of 1.1 ms is
shown. The green and the blue dot correspond to the profiles that
are presented above. In the case of an evolution with the BEC
present, the amplitude is reduced due to dephasing and the fringe
is shifted, showing an increased energy difference. The shaded
area corresponds to the 1σ confidence levels of the phase
estimation.
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δFself ¼ 6.4ð1.2Þ × 10−4, where the error bar corresponds to
the 68% confidence interval.
This positive shift corresponds to an increase of the

energy difference, which is at odds with a naive interpre-
tation of an increased mass, and a more precise theoretical
treatment including the phononic Lamb shift is necessary.

IV. THEORETICAL TREATMENT

A commonly used model describing strongly imbal-
anced mixtures is the celebrated Fröhlich Hamiltonian
[23,24]:

H ¼ HP þHV þHInt; ð2Þ

where the individual components are given by

HP ¼
X
k

Ekâ
†
kâk;

HV ¼
X
q

ωqb̂
†
qb̂q;

HInt ¼
X
k;q≠0

Vqâ
†
kþqâkðb̂q þ b̂†−qÞ: ð3Þ

Ek represent the energy levels of the uncoupled particles.
ωq ¼ cq½1þ ðξqÞ2=2�1=2, where c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gVρBEC=mV

p
is the

speed of sound, describes the dispersion relation of the
excitations to the quantum vacuum. The particle (vacuum
excitation) creation and annihilation operators are denoted
â†k (b̂†q) and âk (b̂q). The third term arises from the density-
density interaction between the particles and the BEC. It
describes the change in momentum of the particle via the
absorption or emission of a phonon. We emphasize that the
coupling strength Vq captures the contact interaction in our
system, which is different from the long-range Coulomb
interaction of an electron in a semiconductor and which is
given by

Vq ¼ gPV
ffiffiffiffiffiffiffiffiffiffi
ρBEC

p fðξqÞ2=½ðξqÞ2 þ 2�g1=4; ð4Þ

where ξ ¼ ð8πρBECaVÞ−1=2 is the healing length of the
condensate. Given the varying density ρBEC in the trap ξ
varies and has to be recalculated for each specific case, but
it is typically on the order of 0.5 μm. In the case of weak
interactions, when the interaction parameter,

α ¼ a2PV
ξaV

¼ m2
r

πm2
V

E2
PV

E2
Ph

; ð5Þ

is much smaller than unity, α ≪ 1, the particle-phonon
interaction term allows for perturbative treatment.
Here, we introduce the characteristic energy scale for
particle-phonon interaction, EPV ¼ gPV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρBECξ

−3
p

, and the
characteristic energy of the phonons, EPh ¼ ðℏc=ξÞ. So,
according to Refs. [23,38], α ≪ 1 simply states that the
coupling should be small enough to avoid the quantum
depletion of the condensate.
The canonical interpretation of the lowest-order correc-

tion to the particle dispersion is that of an enhanced
effective mass m�

P > mP. Following the lines of Ref. [39]
by calculating the lowest-order self-energy diagram (on
shell) and computing its derivative with respect to squared
momentum, we find m�

P=mP ¼ 1þ ναþ � � �, where
ν ≈ 0.364 and 0.336 for 6Li and 7Li setups, respectively.
These are the results for the unconstrained system, when
there is no confinement potential for both the BEC
as well as the particles. Should the fermions be confined
in a harmonic potential with frequency ω0, then a naive
expectation for the shift of the energy levels is
ω0 → ω0ð1 − να=2þ � � �Þ. This entails a downward energy
level shift corresponding to a slow down of the oscillations
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FIG. 3. Observation of the energy shift. The residual modula-
tion of the density of the background BEC leads to an additional
energy shift of the particle energy level. This can be identified by
altering the ratio VV=VP through a change of the detuning of the
optical lattice while keeping the potential depth for the particle
constant. A clear linear dependence on VV=VP is observed.
Interpolating the measurement data to VV ¼ 0 allows for ex-
traction of the energy shift. The positive offset is a direct signature
of the phononic Lamb shift, since it contradicts the negative
energy shift expected from the increased effective mass. The
shaded areas show the theoretically predicted shift in the Fröhlich
scenario, taking into account the uncertainties of the experimental
parameters. We find perfect agreement without free parameters
for fermionic particles (blue). In the case of a noncondensed
bosonic particle cloud (green squares), no shift is observable in
agreement with the theoretical expectation. For a condensed
bosonic particle cloud (red diamonds), we observe a significant
change of the energy shift. The theoretical expectation, not taking
into account thermal excitations (T ¼ 0), is depicted as the red
shaded area.
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and growing with the primary quantum number [40]; see
Fig. 1(a).
This is not supported by the experimental evidence,

and one must improve the model. In order to include this
effect, we take care of the system’s geometry by modifying
the Hamiltonian Eq. (2). From now on, we consider
the particles as being confined in a parabolic potential
(energy parameter ℏω0 and length parameter aHO ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mPω0

p
≈ 0.24 μm) in the x direction, and being free

in all other spatial dimensions. Their eigenstates then have
energies En;k ¼ ℏω0ðnþ 1=2Þ þ ℏ2k2=2mP − μ, where k
is a 2D wave vector and n denotes the respective principal
quantum number for the particles in the confinement
potential. The unperturbed particle Hamiltonian is then

HP ¼
X
n

Z
d2k
ð2πÞ2 En;kâ

†
n;kân;k: ð6Þ

Adapting the interaction term to the present setup leads to
the following expression:

HInt ¼
Z

d2k
ð2πÞ2

Z
d3q
ð2πÞ3

X
n1;n2

VqAðn1; n2; qxÞ

× â†n1;kþq0 ân2;kðb̂q þ b̂†−qÞ: ð7Þ

Here, q0 ¼ ðqy; qzÞ denotes the transverse component of
the phonon momentum. A is the matrix element for the
transition between the harmonic oscillator energy levels:

Aðn1; n2; qxÞ ¼
Z

dxφ�
n1ðxÞφn2ðxÞe−iqxx; ð8Þ

where φnðxÞ are the wave functions of the nth eigenstate.
Finally, the Hamiltonian of the phonons is a continuum
version of Eq. (3):

HV ¼
Z

d3q
ð2πÞ3 ωqb̂

†
qb̂q: ð9Þ

Matrix elements for the particle-phonon scattering are still
given by Eq. (4).
Here, the dimensionless interaction parameter is modi-

fied as compared to the free unconstrained system [see
Eq. (5)]:

αcon ¼
g2PVρBECmV

8π2ℏ3ω0ξ
¼ 1ffiffiffi

2
p

8π2
E2
PV

EPhℏω0

: ð10Þ

It can be interpreted as the ratio between the energy
shift of the dressed states and the energy spacing of the
bare states. For our experimental parameters, αcon ≈ 10−4,
which justifies a perturbative treatment also in the con-
fined case.
Our goal is the energy level renormalization for the

particles in the confinement potential. Just as in the
case of the effective mass, its computation is best
accomplished via lowest-order irreducible self-energy
correction, which is, in general, different for different
oscillator states n. The energy level structure is given by
the retarded self-energy, which is computed via analytical
continuation of its Matsubara counterpart, see,
e.g., Ref. [39],

Σðn;k;iΩÞ¼ ig2PVρBEC
β

Z
d3q
ð2πÞ3

X
iϵj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξqÞ2

ðξqÞ2þ2

s X∞
m¼0

A�ðn;m;qxÞAðm;n;qxÞG½m;k−q0;iΩ−ðm−nÞω0− iϵj�D0ðiϵj;qÞ;

ð11Þ

where Ω is a particle and ϵj ¼ 2πj=β bosonic (phonons)
Matsubara frequencies. β ¼ 1=kBT is the inverse temper-
ature, where kB is the Boltzmann constant, and ρBEC is the
density of the sodium BEC. The necessary Green functions
are

D0ðiϵj;qÞ ¼
2ωq

ðiϵjÞ2 − ω2
q
; ð12Þ

G½m; k − q0; iΩ − ðm − nÞω0 − iϵj�

¼ 1

iΩ − ðm − nÞω0 − iϵj − Em;k−q0
; ð13Þ

where D0 and G are the phonon and the particle Green
function, respectively. G has the same shape for both

fermionic as well as bosonic particles. Performing the
calculation in the assumption that only the two lowest-lying
energy levels of the confining potential are equally popu-
lated, we compute their shifts due to interactions, which we
call self-energy shifts, and subsequently extract the energy
difference δself between them. We take into account the
Fermi distribution of the particles and find that in the
relevant particle density region the energy shifts are only
weakly dependent on the particles’ chemical potential μ
and the ratio aHO=ξ, which is typically on the order of 1,
having the general form

δself ¼
Δω
ω0

¼ αconfðμ; aHO; ξ; ηÞ; ð14Þ

OBSERVATION OF THE PHONONIC LAMB SHIFT WITH A … PHYS. REV. X 6, 041041 (2016)

041041-5



where fðμ; aHO; ξ; ηÞ is a dimensionless factor, an explicit
expression for this quantity is bulky and can be evaluated
only numerically. We stress that, in general, the function f
explicitly depends on the population imbalance η between
the ground and excited states of the confinement potential.
Assuming T ¼ 0, taking the actual experimental parame-
ters in the case of symmetric superposition (when both
oscillator states are equally populated), we obtain (for
details see the Appendix)

fðμ; aHO; ξ; η ¼ 1=2Þ ¼ −0.11þ 0.94
aHO=ξ

: ð15Þ

Using this result we can calculate the expectation value of
the density-dependent phase shift at each point in the cloud.
The band-mapping technique then yields the spatially
averaged phase shift Δϕ. However, different parts of
the lithium cloud are embedded in varying sodium
densities, which leads to locally varying phase shifts,
ϕðrÞ ¼ ω0δselfðrÞt. The coupling of the lithium particles
to the large number of phononic modes is sufficiently
strong that it leads to observable loss of visibility, through
the dephasing of the different modes, during the Ramsey
sequence and, therefore, limits the resolution. It can be
taken into account via a position-dependent relaxation rate
ΓðrÞ, which was studied in detail in Ref. [18]. The total
signal of the fermions is then given by

ΔϕF ¼ asin

�R
d3rρLiðrÞe−ΓðrÞt sin½ϕðrÞ�R

d3rρLiðrÞe−ΓðrÞt
�
: ð16Þ

The density distributions are obtained numerically by
taking into account the finite temperature as well as the
external potentials, such as the optical lattice and the
harmonic trapping due to the ODT. For lithium it is
necessary to include the additional potential due to the
interaction with sodium. We can then calculate the fringe
shift according to Eq. (16), as shown by the shaded inset in
Fig. 3, left-hand panel. The predicted phase shift is in very
good agreement with our measurements.
The conventional notion of the Lamb shift is the energy

difference between the s and p electron states in a hydrogen
atom. It is, however, computed with the renormalized
electron mass as the coupling amplitude of the quantum
electrodynamics (fine-structure constant) cannot be
switched off. According to this orthodox picture, the true
Lamb shift in our system thus amounts to the energy
difference between the shift due to the effective mass
increase and the self-energy shift for confined particles; see
Fig. 1(a). A direct measurement of the effective mass for
particles in a phononic vacuum along the lines of Ref. [15]
could help to clarify this subtlety. However, this important
point is often ignored in the solid-state and semiconductor
context, and the term Lamb shift is generally used to

describe energy level corrections of confined particles
coupled to phonon continua.

V. PHONONIC LAMB SHIFT FOR
BOSONIC PARTICLES

Our new experimental platform further allows us to
investigate the phononic Lamb shift with bosonic particles,
a feature not available in other experiments. Calculating the
phononic Lamb shift now for bosonic particles at T ¼ 0
leads to

δself ¼
Δω
ω0

¼ αconfðρ2D; aHO; ξ; ηÞ; ð17Þ

fðρ2D;aHO;ξ;ηÞ ¼ ρ2Dξ
2½ggðaHO=ξÞð1− ηÞ−geðaHO=ξÞη�;

ð18Þ

ggðaHO=ξÞ ¼
8π2ffiffiffi
2

p eðaHO=ξÞ2 ½1 − erfðaHO=ξÞ�; ð19Þ

geðaHO=ξÞ ¼ 4π
aHO
ξ

ffiffiffiffiffiffi
2π

p

×

�
1 −

ffiffiffi
π

p aHO
ξ

eðaHO=ξÞ2 ½1 − erfðaHO=ξÞ�
�
:

ð20Þ

A crucial difference from the fermionic case is the
explicit occurrence of the two-dimensional density of
condensed particles ρ2D in Eq. (18). The physical reason
is that the condensed particles populate a single state and
thus coherently scatter the phonons, leading to an ampli-
fication of the signal. Employing bosonic particles thus
results in a larger Lamb shift due to bosonic enhancement.
We use this feature to boost the Lamb shift in experi-

ments with bosonic particles (7Li) that are condensed
(≈60% condensate fraction). The results (red diamonds)
are displayed in Fig. 3. We observe that the effect of the
modulation of the background BEC is inverted and smaller
than for fermionic particles, as the interspecies scattering
length changes sign and is reduced by a factor of 3. Thus,
the energy shift for a single boson is predicted to be
10 times smaller than for fermionic 6Li. Nevertheless, the
observed energy shift is amplified by a few thousands of
bosons in the ground state of each pancake, leading to
δBself ¼ 4.1ð1Þ × 10−3. For comparison, we also perform
the same experiments with a noncondensed cloud of 7Li
atoms (green squares) at a temperature of≈450 nK, leading
to smaller numbers of atoms per quantum state, and a
weakened coupling as we operated at an approximately
2 times smaller BEC density. As expected from the
theoretical predictions, we do not observe any shift in this
regime.
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The observed total phase shift for the condensed particles
can then be calculated from Eq. (17) as a lithium density
weighted mean:

ΔϕB ¼ asin

�R
d3rρLi;BECðrÞ sin½ϕðrÞ�R

d3rρLi;BECðrÞ
�
: ð21Þ

Here, we assume that only the condensed part experiences
an energy shift, as the thermal part will not experience the
Bose amplification and the phononic Lamb shift is there-
fore negligible. However, the total signal is given as a
weighted sum over shifted and unshifted phase patterns.
The weak interaction between the BEC and the bosonic
particles leads to long coherence times (τ > 50 ms), which
are much longer than the Ramsey sequence, such that
decoherence can be neglected in this case. In order to
capture properly the lithium occupation number in the
individual sites, we slice the ODT density according to the
periodicity of the lattice. These occupation numbers enter
the detailed calculation of the density distribution in the
total confinement potential, where a 2D description is
applied, and ρ2D is obtained for each pancake individually.
The theoretically predicted phase shift is shown by the

red shaded area in the right-hand panel of Fig. 3. It is much
smaller than the observed shift. However, a quantitative
comparison between theory and experiment is difficult in
this specific case. The overlap between the two species is
much more sensitive to details in the trap geometries,
limiting its control. For the fermionic 6Li, Pauli blocking
stabilizes the density distribution and the attractive inter-
actions with the condensate lead to a large overlap between
the two clouds. On the other hand, in the bosonic case,
the condensation dramatically changes the density profile
for temperatures of the order of the critical one. Further,
the repulsive interactions between the bosonic 7Li and the
condensate push the minority species to the edge of the
sample, where the finite-temperature effects are most
pronounced. This poses a challenge to the theoretical
description. In addition, despite the fact that the interpar-
ticle interaction is very weak, we cannot exclude its
contribution to the discrepancy.
For a more quantitative comparison between theory and

experiment for bosonic particles, we measure the energy
shift as a function of different populations of ground and
excited state. Since the energy shift is proportional to the
occupation number for bosons, there exists a specific
relative population η0, where the energy shifts are equal
for both levels. Mathematically it corresponds to the point
where fðρ2D; aHO; ξ; η0Þ ¼ 0. For our experimental setup,
this implies a vanishing phase shift for η0;theor ¼ 0.85ð2Þ,
where the uncertainty arises from the determination of the
density profile. We emphasize that this crossing point
depends only weakly on the overlap between the particles
and the BEC. As such, it puts the theoretical predictions to a
precise test.

By varying the length of the first Ramsey pulse, the
relative occupation of the excited state during time evolu-
tion is changed. Figure 4 depicts the dependence of δself
on the excited fraction and confirms the prediction [42].
The experiments with fermions (blue) do not reveal any
significant change. This is in agreement with the theoretical
analysis of the result [Eq. (14)], which reveals only weak
dependence on η below the experimental sensitivity of our
setup. In contrast, the data with bosonic particles (red) show
a clear linear dependence in agreement with the theoretical
prediction of Eq. (18). Motivated by this observation, we
extract the crossing point via a linear fit, where the slope
and the offset are left as free parameters. The observed
crossing point at η0;expt ¼ 0.81ð7Þ is in excellent agreement
with the theoretical prediction. This observation confirms
our understanding of the phononic Lamb shift for bosonic
particles within the developed frameworks. It also suggests
that the disagreement in the amplitude of the phononic
Lamb shift might be due to uncontrolled systematic shifts
in the overlap between the BEC and the lithium particles,
which should be investigated in future works.

VI. CONCLUSION

Our results are in the realm of implementation of analog
quantum simulators on the basis of ultracold gas mixtures
[32,43]. We open up an avenue for benchmarking a new
class of many-body theories, comprising not only different
mutually interacting particles, but also interactions of their
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FIG. 4. Population dependence of the energy shift. The energy
shift depends on the relative state population η as ground and
excited state experience different energy shifts. This can be
observed in a Ramsey sequence with an unequal superposition
during free time evolution, keeping the other relevant parameters
constant. Experiments with bosonic particles are shown by red
diamonds. From these data we extract a critical η0;expt ¼ 0.81ð7Þ,
in good agreement with theoretical predictions of η0;theor ¼
0.85ð2Þ. For fermionic particles (blue circles) we do not observe
any dependence on η, as expected from our calculations.
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collective excitations. Such models are, e.g., proposed to
play a decisive role in fundamental open problems as
the origin of the high-temperature superconductivity; see
Ref. [44]. Furthermore, this setup captures several impor-
tant nonrelativistic features of QED. In this way, we realize
a new experimental platform for quantitative exploration
of such fascinating phenomena such as Casimir effect in
low-dimensional systems, where quantum fluctuations are
dramatically enhanced [45,46], as well as in dynamical
situations [47–49]. By varying the distance between the
lattice valleys, we could directly test the dependence of the
energy shift on this spacing and therefore measure sign and
amplitude of the vacuum-induced forces. In a many-particle
limit, the background-mediated interaction between the
particles can also lead to a generation and detection of
nonlocal entanglement [50].

ACKNOWLEDGMENTS

We would like to thank F. Grusdt, E. Demler, and
R. Schmidt for discussions. This work was supported by
the Heidelberg Center for Quantum Dynamics, the

ExtreMe Matter Institute, and the European Commission
FET-Proactive grant AQuS (Project No. 640800). This
work is part of and supported by the DFG Collaborative
Research Centre “SFB 1225 (ISOQUANT)”. F. A. O.
acknowledges support by the IMPRS-QD. A. K. is sup-
ported by the Heisenberg Programme of the Deutsche
Forschungsgemeinschaft (Germany) under Grant No. KO
2235/5-1.

Note added.—Recently, we became aware of the recent
observation of the Bose polaron in the strong coupling limit
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APPENDIX: DETAILS OF THE CALCULATIONS

Here, we present the details of the calculations in the
fermionic case. First, we can compute the sum over
the Matsubara frequencies ϵj in Eq. (11) and perform
the analytic continuation procedure iΩ → ωþ iδ in order
to obtain the retarded self-energy (δ is a positive
infinitesimal):

Σðn;k;ωÞ ¼ −g2PVρBEC
Z

d3q
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξqÞ2

ðξqÞ2 þ 2

s X∞
m¼0

A�ðn;m; qxÞAðm; n; qxÞ

×

�
Nq þ nF

ω − ðm − nÞω0 − Em;k−q0 þ ωq þ iδ
þ Nq þ 1 − nF
ω − ðm − nÞω0 − Em;k−q0 − ωq þ iδ

�
;

where nF is the Fermi distribution function of particles and Nq ¼ 1=½expðβωqÞ − 1� stands for the Bose distribution of
phonons. For the particles in the ground state of the confinement potential n ¼ 0, there two classes of processes:
scatterings within the n ¼ 0 state and scatterings into the first excited state m ¼ 1. The corresponding terms are very
similar and we exemplarily show the computations due to the first kind of transitions. In the above result it is convenient
to go over to an integral over s ¼ jk − q0j and over the angle θ between the vectors k and q0. After performing the latter,
we obtain

Σ00ðk;ωÞ ¼
g2PVρBEC
8π2k

Z
dqxdq0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξqÞ2

ðξqÞ2 þ 2

s
e−ðaHOqxÞ2=2

Z
kþq0

jk−q0j
sds

�
Nq þ nFðsÞ

ω − E0;s þ ωq þ iδ
þ Nq þ 1 − nFðsÞ
ω − E0;s − ωq þ iδ

�
; ðA1Þ

where the subscript 00 reflects the fact that we consider particle scatterings within the ground state of the harmonic
oscillator. In the next step, we use the Plemelj formula in order to split off the real part of the self-energy yielding the
energy shift. This procedure formally amounts to taking the principal value of the above integrals in the limit δ → 0. Then
the energy correction for the particle with the energy ω ¼ k2=2mP takes the following form:

δϵ00 ¼
g2PVρBECmP

8π2ℏ2ξκ

Z
dηxdη0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η02 þ η2x

η02 þ η2x þ 2

s
e−ðaHO=ξÞ2η2x=2

×
Z ðκþη0Þ2

ðκ−η0Þ2
dϵ

�
Nq þ nFðϵÞ

κ2 − ϵþ Y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η02 þ η2x

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðη02 þ η2xÞ=2

p þ Nq þ 1 − nFðϵÞ
κ2 − ϵ − Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η02 þ η2x

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðη02 þ η2xÞ=2

p �
; ðA2Þ

where the integrals are over dimensionless variables η0 ¼ q0ξ, ηx ¼ qxξ, κ ¼ kξ, andY ¼ ffiffiffi
2

p
mP=mV . Here, one has to keep in

mind that the fermionic chemical potential μ is now measured in units of ℏ2=ð2mPξ
2Þ. The remaining integrals can be

evaluated only numerically. The result depends onμ2mPξ
2=ℏ2 (which is ultimately related to the band imbalance parameter η;

see main text), the ratio aHO=ξ, and κ. It turns out that, in the relevant experimental parameter regime (T ¼ 0 and numbers
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given in the main text), the integral is to a good degree of
accuracy linear in κ, canceling the ∼1=κ prefactor. In a
similar way, one can obtain the expressions for the energy
shifts for particles in the harmonic oscillator ground state
due to their excursions into the first excited states δϵ01 as
well as the shifts for the particles residing in the first excited
state δϵ10 and δϵ11. The differences from Eq. (A1) are only
the matrix elements Aðn;m; qxÞ [see Eq. (8)], which lead to
the extension of the exponential factor e−ðaHOqxÞ2=2 by
ðaHOqxÞ2=2 and ½1 − ðaHOqxÞ2�2=4, respectively. In addi-
tion, in the energy denominators of Eq. (A1) there is a trivial
adjustment of energies by ω0 for the terms corresponding to
scatterings into the adjacent level of the confinement
potential. Combining all corrections to the energy difference
between the lowest two states of the confinement potential
and normalizing to ω0, we obtain the result Eq. (14), where
the function fðμ; aHO; ξ; ηÞ for the actual experimental setup
is given in Eq. (15).
Following the same line, one performs the calculation for

the bosonic particles.
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