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The flow and deformation of macromolecules is ubiquitous in nature and industry, and an understanding
of this phenomenon at both macroscopic and microscopic length scales is of fundamental and practical
importance. Here, we present the formulation of a general mathematical framework, which could be used to
extract, from scattering experiments, the molecular relaxation of deformed polymers. By combining and
modestly extending several key conceptual ingredients in the literature, we show how the anisotropic
single-chain structure factor can be decomposed by spherical harmonics and experimentally reconstructed
from its cross sections on the scattering planes. The resulting wave-number-dependent expansion
coefficients constitute a characteristic fingerprint of the macromolecular deformation, permitting detailed
examinations of polymer dynamics at the microscopic level. We apply this approach to survey a long-
standing problem in polymer physics regarding the molecular relaxation in entangled polymers after a large
step deformation. The classical tube theory of Doi and Edwards predicts a fast chain retraction process
immediately after the deformation, followed by a slow orientation relaxation through the reptation
mechanism. This chain retraction hypothesis, which is the keystone of the tube theory for macromolecular
flow and deformation, is critically examined by analyzing the fine features of the two-dimensional
anisotropic spectra from small-angle neutron scattering by entangled polystyrenes. We show that the
unique scattering patterns associated with the chain retraction mechanism are not experimentally observed.
This result calls for a fundamental revision of the current theoretical picture for nonlinear rheological
behavior of entangled polymeric liquids.

DOI: 10.1103/PhysRevX.7.031003 Subject Areas: Fluid Dynamics, Materials Science,
Soft Matter

I. INTRODUCTION

The entanglement phenomenon is one of the most
important and fascinating characteristics of long flexible
chains in the liquid state [1–3]. Our current understanding
of the dynamics of entangled polymers is built on the tube
theoretical approach pioneered by de Gennes [4] and Doi
and Edwards [5–9]. In his 1971 paper [4], de Gennes
demonstrated how the diffusion problem of a flexible chain
could be understood in terms of reptation in the presence of

fixed obstacles. A few years later, in a series of seminal
publications [6–8], Doi and Edwards illustrated how the
molecular motion under flow and deformation could be
explained with the aid of the tube concept. The advent of
the tube model has revolutionized the field of polymer
dynamics, and the predictions of the model about both the
linear and nonlinear viscoelastic properties of entangled
polymers have been significantly improved over the years,
by incorporating additional molecular mechanisms such as
contour length fluctuation [10–12], constraint release
[13–17], and chain stretching [18–20]. However, despite
the remarkable success of the tube approach, particularly in
the linear response regime, one of the central hypotheses of
the model has thus far eluded experimental confirmation.
In an effort to account for the nonlinear rheological

behavior, Doi and Edwards [6] proposed a unique micro-
scopic deformation mechanism for entangled polymers,
which asserts that the external deformation acts on the tube,
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instead of the polymer chain [21]. The chain retraction
within the affinely deformed tube would lead to nonaffine
evolution of chain conformation beyond the Rouse time,
with entanglement strands being oriented but hardly
stretched. This hypothesis, being a keystone of the tube
model, stands in stark contrast to the elastic deformation
mechanisms ofmanyother alternative theoretical approaches
such as the transient networkmodel [22–24],where the affine
deformation mechanism is adopted. While scattering tech-
niques, particularly small-angle neutron scattering (SANS),
have long been envisioned as the ideal tool for critical
examination of this key hypothesis of the tube model, the
SANS investigations in the past several decades have not led
to a clear conclusion, with many questioning the validity of
the nonaffine mechanism [25–30], some claiming support
[31–33], and others being silent on this issue [34,35].
Moreover, recent experimental studies [36–39] have called
into question the basic premises of the tube model, including
the picture of barrier-free Rouse retraction. Given the critical
role that chain retraction plays in the tube model, a clarifi-
cation of the molecular relaxation mechanism of entangled
polymers after a large step deformation is an urgent need.
Here, we present a general approach for extracting

microscopic information about molecular relaxation in
deformed polymers using small-angle scattering (SAS).
By combining and modestly extending the ideas of spheri-
cal harmonic decomposition in the literature, we demon-
strate how the fingerprint features of molecular relaxation
can be obtained by a generalized Fourier analysis of the 2D
SAS spectrum. The application of this novel method to
small-angle neutron scattering experiments on deformed
entangled polymers permits, for the first time, quantitative
and model-independent analysis of the full anisotropic 2D
spectrum, and provides decisive and convincing evidence
against the chain retraction mechanism conceived by the
tube model. We show that the two prominent spectral
features associated with the chain retraction—peak shift of
the leading anisotropic spherical harmonic expansion
coefficient and anisotropy inversion in the intermediate
wave number (Q) range around Rouse time—are not
experimentally observed in a well-entangled polystyrene
melt after a large uniaxial step deformation. This result calls
for a fundamental revision of the current theoretical picture
for nonlinear rheological behavior of entangled polymeric
liquids. The application of the spherical harmonic expan-
sion approach, as powerfully illustrated by the current
study of entangled polymers, opens a new venue for
improving our understanding of macromolecular flow
and deformation via rheo-SAS techniques.

II. HISTORICAL SURVEY OF THE FIELD

The central problem in the study of macromolecular
deformation is to gain knowledge about the evolution of
conformational statistics of polymers under external per-
turbation. It has long been recognized that small-angle

scattering techniques, particularly small-angle neutron
scattering, provide a powerful experimental method for
this problem, because of their ability to retrieve micro-
scopic information about chain statistics over a wide range
of length scales. The theoretical [6,40–51] and experimen-
tal attention [25–30,32,34,35,52–59] in the past, however,
has been focused primarily on the analysis of the radius of
gyration tensor of a polymer under flow and deformation,
and a systematic approach for quantitative analysis of the
anisotropic scattering patterns has not emerged from the
previous investigations. The radius of gyration, being an
averaged statistical quantity, offers only a coarse-grained
picture of the molecular deformation on large length scales.
In the case of entangled polymers, because of the large
overall chain dimensions involved, it often becomes
impractical to determine the radius of gyration Rg in a
model-independent manner via the Guinier analysis [60].
This difficulty has plagued research aimed at resolving the
controversy regarding the chain retraction mechanism pro-
posed by Doi and Edwards. Moreover, the traditional Rg

analysis provides only an incomplete picture of the molecu-
lar deformation by examining a limited number of directions
in space. This method is evidently inadequate in the case of
complex scattering patterns [61–71], such as “butterfly” and
“lozenge” shapes, where a full two-dimensional data analy-
sis is clearly a more desired approach.
Motivated by the aforementioned scientific as well as

technical challenges, we set out to explore a different
approach to the rheo-SAS problem of polymers, by
borrowing, combining, and extending the idea of spherical
harmonic expansion that has been introduced by several
groups of authors in different contexts spanning over a
period of roughly half a century [72–97].
Building on the Taylor expansion treatment of earlier

researchers [98–100], Evans and co-workers [76,78–
80,82,87] were among the first who systematically inves-
tigated the structural distortion of simple fluids under shear
by expressing the anisotropic pair distribution function in
terms of spherical harmonics. These computational studies
inspired the discussion of the principles of group-theoretical
statistical mechanics for non-Newtonian flow [89–91], and
these concepts were also echoed by the experimental efforts
of a number of research groups [77,81,88,92,93] around the
same time. However, these investigations focused exclu-
sively on colloidal suspensions under small shear perturba-
tion, whereas large extensional deformation is the preferred
condition for probing polymeric systems. Additionally,
while it is straightforward to perform spherical harmonic
decomposition in computer simulations where three-
dimensional real-space information of particle coordinates
is readily available, small-angle scattering experiments can
only access the two-dimensional reciprocal space cross
sections on certain planes, for which the projected spherical
harmonics may not necessarily form an orthogonal basis set.
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The delicacy of this issue has not been fully appreciated until
very recently [101].
In the polymer community, Roe and Krigbaum have

already conceived the idea of spherical harmonic expansion
of the orientation distribution function of statistical seg-
ments in deformed polymer networks and discussed the
potential application of this technique in analyzing the
variation of x-ray intensity of the amorphous halo observed
for stretched polymers [72]. However, it was not until the
work of Mitchell and co-worker almost 20 years later
[84–86] that a more formal treatment of the measured
scattering intensity in terms of Legendre expansion for the
uniaxial extensional geometry was developed. Despite the
widespread use of this method, the polymer community has
so far mainly looked at the problem of scattering of
deformed polymers through the lens of rheology, where
the major interest is to extract an order parameter to
compare with stress. Consequently, the previous works
in this area fell short at recognizing the value of spherical
harmonic expansion as a general approach for character-
izing Q-dependent deformation anisotropy and chain con-
formation at different length scales.

III. SPHERICAL HARMONIC EXPANSION
APPROACH

A. Philosophical shift

In this section, we present our general formulation of the
small-angle scattering problem of deformed polymers. We
start the discussion by describing the angle from which we
approach this topic. As we demonstrate, our viewpoint
represents a philosophical departure from the previous
method employed in the polymer community, where the
primary concern was to extract a single order parameter.
Following the convention in the field of polymer dynamics
[9,102], let us suppose that the polymer chain is modeled
by a series of N beads, each located at ri. In the context of
small-angle neutron scattering by isotopically labeled
deformed melts, the measured coherent scattering intensity
Icoh, which is dependent on a scattering wave vector Q, is
proportional to the single-chain structure factor (form
factor) SðQÞ [60,103]:

IðQÞ ¼ IcohðQÞ þ Iinc

¼ ðbD − bHÞ2fð1 − fÞnN2SðQÞ þ Iinc; ð1Þ

SðQÞ ¼ 1

N2

�XN
i;j

e−iQ·ðri−rjÞ
�
; ð2Þ

where (bD − bH) is the contrast factor due to the difference
in the coherent scattering length between hydrogen and
deuterium, f is the fraction of the labeled species, n is the
number density, and Icoh is the incoherent background.
h� � �i stands for ensemble average. Let ψ ijðrÞ be the

segment distribution function that describes statistically
the separation between beads i and j. We can define an
intrachain pair distribution function gðrÞ as [104]

gðrÞ ¼ 1

N2

XN
i¼1

XN
j¼1

ψ ijðrÞ; ð3Þ

which is related to the single-chain structure factor through
the Fourier transform:

SðQÞ ¼
Z

gðrÞe−iQ·rdr: ð4Þ

We note that statistical distribution functions are the
centerpiece of the kinetic theory of polymer fluid dynam-
ics. The long tradition of kinetic theory for polymeric
liquids was initiated by the celebrated paper of Kramers
[105], developed by Kirkwood and co-workers
[98,106,107], Rouse [108], Zimm [109], Lodge and co-
workers [23,110,111], Yamamoto [24], and others [112–
115], and epitomized in the classical book by Bird et al.
[102]. We see, from Eqs. (1)–(4), that the spatially
anisotropic scattering intensity accessed by SAS techniques
in the reciprocal space reflects nothing but the perturbation
of configuration distribution functions of the polymer chain
by external deformation. However, this seemingly obvious
and yet fundamental viewpoint has not been fully appre-
ciated, as witnessed by the immense disparity between
theoretical development and experimental efforts by SAS.
As we show below, a powerful weapon for analyzing SAS
data can be forged by drawing upon the concept of
spherical harmonic expansion. This new approach supplies
a convenient platform for connecting small-angle scattering
experiments and statistical and molecular theories of
polymers.

B. 3D decomposition and 2D reconstruction

In the context of our current investigation, the measured
scattering signal is dominated by coherent scattering, i.e.,
Icoh ≫ Iinc. Thus,

SðQÞ ¼ IðQÞ
.h

lim
Q→0

IisoðQÞ
i
; ð5Þ

where IisoðQÞ is the scattering intensity from the isotropic
sample. Because of this simple proportionality between
SðQÞ and IðQÞ, we focus only on SðQÞ in the discus-
sions below.
Formally, the dependence of the single-chain structure

factor (form factor) SðQÞ on the magnitude (Q) and
orientation (Ω) of the scattering wave vector can be
expressed in terms of spherical harmonics:

SðQÞ ¼
X
l;m

Sml ðQÞYm
l ðΩÞ; ð6Þ
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where Sml ðQÞ is the expansion coefficient corresponding to
each real spherical harmonic function Ym

l ðΩÞ. In this work,
our choice of the spherical coordinates follows the con-
vention in physics [116], for which θ is the polar angle from
the positive z axis with θ ∈ ½0; π�, and ϕ is the azimuthal

angle in the xy plane from the x axis with ϕ ∈ ½0; 2πÞ. For
the uniaxial extension problem investigated herein, the
stretching is along the z axis and the incident neutron beam
is perpendicular to the xz plane [Fig. 1(a)]. Our real
spherical harmonic functions are defined as

Ym
l ðΩÞ ¼ Ym

l ðθ;ϕÞ ¼

8>>><
>>>:

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ ðl−jmjÞ!

ðlþjmjÞ!
q

Pjmj
l ðcos θÞ sinðjmjϕÞ ðm < 0Þffiffiffiffiffiffiffiffiffiffiffiffiffi

2lþ 1
p

P0
l ðcos θÞ ðm ¼ 0Þffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2lþ 1Þ ðl−mÞ!
ðlþmÞ!

q
Pm
l ðcos θÞ cosðmϕÞ ðm > 0Þ;

ð7Þ

which differ from the classical definitions by a factor of
1=

ffiffiffiffiffiffi
4π

p
. Because of the axial symmetry of the uniaxial

extension problem, it is easy to see that all the m ≠ 0 terms
and the odd l terms are forbidden [72,84,87,96]; namely,

SðQÞ ¼ SðQ; θÞ
¼

X
l∶even

S0l ðQÞY0
l ðθÞ

¼
X
l∶even

S0l ðQÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
P0
l ðcos θÞ: ð8Þ

In other words, SðQÞ is independent of ϕ and could be
written as a linear combination of even order Legendre

functions. In particular, the term S00ðQÞY0
0ðθÞ represents the

isotropic part of the distorted structure, whereas the term
S02ðQÞY0

2ðθÞ is the leading anisotropic component that
corresponds to the symmetry of uniaxial deformation.
Equation (8) gives the spherical harmonic expansion of

the anisotropic single-chain structure factor in three-
dimensional space. In order to obtain the expansion
coefficients S0l ðQÞ from SAS experiments, we must con-
sider the cross section of SðQÞ on the two-dimensional
detector plane. In the case of shear, the low symmetry of
this geometry makes the reconstruction of SðQÞ from 2D
scattering patterns rather complicated [101]. However, the
unique symmetry of uniaxial extension greatly simplifies

FIG. 1. (a) Illustration of SANS measurements on uniaxially elongated samples: the stretching is along the z axis, whereas the incident
SANS beam is perpendicular to the xz plane. (b) Evolution of the SANS spectrum with polymer relaxation.
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the matter. It is evident from Eq. (8) that the cross section of
SðQÞ on the xz plane is

SðQx;Qy ¼ 0; QzÞ ¼ SðQ; θ;ϕ ¼ 0Þ ¼ SðQ; θÞ
¼

X
l∶even

S0l ðQÞY0
l ðθÞ: ð9Þ

Equation (9) and the fact that
R
1
−1 P

0
nðxÞP0

mðxÞdx ¼
½2=ð2nþ 1Þ�δnm indicate that Y0

l ðθÞ form an orthogonal
basis set not only in 3D space but also on the xz plane.
Therefore, the expansion coefficient S0l ðQÞ can be straight-
forwardly computed from the small-angle scattering pattern
on the xz plane as

S0l ðQÞ¼ 1

2

Z
π

0

SðQ;θ;ϕ¼ 0ÞY0
l ðθÞsinθdθ

¼ 1

2limQ→0IisoðQÞ
Z

π

0

IxzðQ;θÞY0
l ðθÞsinθdθ; ð10Þ

where IxzðQ; θÞ is the detected scattering intensity on the
xz plane.
In passing, we note that the spherical harmonic expansion

approach is inclusive of the traditional data analysis method
that focuses on the scattering intensities along theparallel and
perpendicular directions: the projected structures in these
directions could be expressed as linear combinations of the
expansion coefficients. For example, we have

S∥ðQÞ ¼ SðQx ¼ 0; Qy ¼ 0; QzÞ ¼ SðQ; θ ¼ 0Þ ¼
X
l∶even

S0l ðQÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
P0
l ð1Þ

¼ S00ðQÞ þ
ffiffiffi
5

p
S02ðQÞ þ

ffiffiffi
9

p
S04ðQÞ þ

ffiffiffiffiffi
13

p
S06ðQÞ þ

ffiffiffiffiffi
17

p
S08ðQÞ þ � � � ; ð11Þ

S⊥ðQÞ ¼ SðQx;Qy ¼ 0; Qz ¼ 0Þ ¼ S

�
Q; θ ¼ π

2

�
¼

X
l∶even

S0l ðQÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
P0
l ð0Þ

¼ S00ðQÞ −
ffiffiffi
5

p

2
S02ðQÞ þ 9

8
S04ðQÞ − 5

ffiffiffiffiffi
13

p

16
S06ðQÞ þ 35

ffiffiffiffiffi
17

p

128
S08ðQÞ þ � � � ; ð12Þ

FIG. 2. Illustration of the spherical harmonic expansion approach with the simulated spectrum from the affine model, for a linear
polymer that is uniaxially stretched to λ ¼ 3. (a) Angular dependence of the anisotropic single-chain structure factor at various Q’s.
(b) Angular dependence of the projections of the spherical harmonic functions on the xz plane. As we discuss in the text, these are
essentially Legendre functions. (c) TheQ-dependent expansion coefficients S0l ðQÞ are given by Legendre expansion of SðQ; θÞ. (d) The
spherical harmonic expansion decomposes the 2D SANS spectrum into contributions from different symmetries: the isotropic
component S00ðQÞY0

0ðθÞ, and the anisotropic components S02ðQÞY0
2ðθÞ, S04ðQÞY0

4ðθÞ, S06ðQÞY0
6ðθÞ, etc.
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where S∥ðQÞ and S⊥ðQÞ are the cross sections of SðQÞ along
the parallel and perpendicular directions to stretching,
respectively.

C. Fingerprinting molecular deformation

To further illustrate the idea of spherical harmonic
expansion analysis, let us consider a simulated single-chain
structure factor for a polymer uniaxially elongated to a
stretching ratio λ of 3.0 (Fig. 2), calculated using the affine
model [35,117]. At a given magnitude of the scattering
wave vector Q, SðθÞ is a periodic function of θ with a
period of π [Fig. 2(a)]. Because of the orthogonality of
Y0
l ðθÞ, SðθÞ can be decomposed in terms of Y0

l ðθÞ, and the
expansion coefficient S0l can be obtained by angular
averaging SðθÞ with the weighing factor Y0

l ðθÞ [Eq. (10)
ad Figs. 2(b) and 2(c)]. Carrying out this procedure for all
the different Q’s, we translate the anisotropic 2D scattering
pattern [Fig. 2(d)] into a 1D plot ofQ-dependent expansion
coefficients S0l ðQÞ [Fig. 2(c)].
While Figs. 2(c) and Fig. 2(d) contain the same amount

of information mathematically, the plot of expansion
coefficients is much more convenient to analyze in great
detail. Moreover, by isolating the spectral contributions
from different symmetries [Fig. 2(d)], the spherical har-
monic decomposition approach provides a new means to
study the molecular relaxation and deformation mecha-
nisms of polymers, as we see in Secs. IV and V.
Mathematically, our treatment of the small-angle scatter-

ing spectrum can be regarded as a generalized Fourier
expansion approach. The anisotropic single-chain structure
factor is decomposed by spherical harmonic functions and
resynthesized from the 2D patterns in small-angle scattering
experiments. This approach helps to distill the “hidden”
information about molecular deformation from the distorted
2D spectrum. At this point, it is useful to draw an analogy to
the ideas of “rheological fingerprinting” of complex fluids
using large-amplitude oscillatory shear [118–132]. In par-
ticular, it has been proposed that the Fourier or Chebyshev
expansion coefficients for the stress response could be used
to define unique fingerprints of nonlinear rheology of soft
viscoelastic materials and reveal properties that are typically
obscured by conventional test protocols. It has also been
recognized that the model-independent nature of the har-
monic analysis not only enables quantitative characterization
of materials but also allows one to challenge constitutive
relations. From this perspective, our spherical harmonic
expansion approach to SAS and the widely used (general-
ized) Fourier analysis in the complex fluids community share
a similar philosophical root.

IV. MOLECULAR FINGERPRINTS
OF CHAIN RETRACTION

Having laid the foundation for the spherical harmonic
expansion technique, let us now return to the central

question that we raised at the beginning of this article:
how can we critically test the chain retraction hypothesis of
the tube theory for entangled polymers? The investigations
in the past have been focused on the analysis of the radius
gyration tensor in step-strain relaxation experiments, fol-
lowing the original strategy outlined in the celebrated 1978
paper of Doi and Edwards [6] [Fig. 3(a)]. Theoretically,
immediately after a fast step deformation, the radius of
the gyration tensor hR2

giαβ is equal to the affinely deformed
one [6,46]:

hR2
giαβ ¼ hR2

gi0hðE · uÞα · ðE · uÞβi; ð13Þ

where hR2
gi0 is the equilibrium mean-square radius of

gyration, E is the deformation gradient tensor, and u is
a unit vector of isotropic distribution. The averaging h� � �i
for ðE · uÞα · ðE · uÞβ is taken over the equilibrium distri-
bution of u. The chain retraction along the tube around the
Rouse time would reduce all components of hR2

giαβ by a
factor of hjE · uji:

hR2
giαβ ¼ hR2

gi0
hðE · uÞα · ðE · uÞβi

hjE · uji : ð14Þ

After the retraction, the chain continues to relax towards the
equilibrium state through reptation. In the case of uniaxial
extension geometry, the above-mentioned mechanism is
expected to lead to a nonmonotonic change of radius of
gyration in the perpendicular direction during the stress
relaxation.
Figure 3(b) gives an example for the evolution of the

radius of gyration in the parallel and perpendicular direc-
tions to stretching, calculated according to the modified
tube model proposed by Graham, Likhtman, Milner, and
McLeish [20], i.e., the GLaMM model. The GLaMM
model is widely considered the state-of-the-art version of
the tube theory, as it incorporates the effects of reptation,
chain stretch, and convective constraint release on the
microscopic level through a stochastic partial differential
equation for the contour dynamics. From Fig. 3(b), we see
that the qualitative feature of chain retraction—the non-
monotonic change of Rg in the perpendicular direction—is
well captured by the GLaMM model. In addition, the
magnitude of retraction, i.e., R⊥

g ðt ¼ 0Þ=R⊥
g , is also con-

sistent with the expectation from the original Doi-Edwards
theory, which predicts the ratio to be

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihjE · ujip
.

In principle, one should be able to critically test the chain
retraction hypothesis by performing SANS experiments on
uniaxially stretched entangled polymer melts and compar-
ing the measured Rg with theoretical predictions. In reality,
experimentalists have encountered tremendous difficulty in
following this approach. First, due to inevitable elastic
breakup after a large step deformation [133], stress relax-
ation experiments of this kind are typically restricted to
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relatively small strains. This constraint means the magni-
tude of the chain retraction would be rather small and thus
require highly accurate SANS experiments. On the other
hand, however, it is practically impossible to reliably
determine the radius of gyration tensor through model-
independent Guinier analysis, because of the limited Q
range and flux of existing SANS instruments and the large
molecular size of entangled polymers. As a result, exper-
imentalists in the past have had to resort to using the
affinelike model to determine Rg by averaging over an
opening angle along the principal axes [26,28,30,32,34,55].
Putting the ambiguity in model fitting aside, this approach
does not even seem to be logically self-consistent: it is not
possible to critically test a nonaffine model (tube model) by
fitting the experimental data with the affinelike model,
which assumes the same transformation rule for chain
conformation at all length scales.
To circumvent the dilemma with the traditional Rg analy-

sis, here, we propose a different approach to examine the
chain retraction hypothesis by using the spherical harmonic

expansion technique. The upper panel of Fig. 3(c) presents
the major component of the deformation anisotropy S02ðQÞ
before and after the chain retraction for a step strain of
λ ¼ 1.8, calculated using the affine model and the Doi-
Edwards model [6], respectively. We see that the chain
retraction would lead to a horizontal shift of S02ðQÞ towards
higher Q. This prediction is consistent with the physical
picture offered by the tubemodel: the chain retraction reduces
the overall dimension of the chain, causing the horizontal
shift, but the orientation anisotropy is not relaxed, as the peak
amplitude remains the same. This analysis shows that there
are two distinct spectral features associated with the chain
retraction in a step-strain relaxation experiment: the peak shift
of S02ðQÞ and the increase of anisotropy in the intermediateQ
range. We term the latter feature “anisotropy inversion”—
instead of relaxation of deformation anisotropy, the chain
retraction is expected to give rise to an increase of anisotropy
in the intermediate Q range.
Having made this qualitative analysis with the original

Doi-Edwards theory, we now turn to the more sophisticated

FIG. 3. (a) Illustration of the molecular relaxation mechanism envisioned by the Doi-Edwards theory. The chain conformation
immediately after the step-strain deformation can be described by the affine transformation. The chain retraction around Rouse time
quickly equilibrates the contour length and leads to a reduction of all components of the radius of gyration tensor. The molecular
relaxation continues via reptation after chain retraction. (b) Evolution of the radius of gyration in the parallel and perpendicular
directions to stretching, as predicted by the GLaMM model for an entangle polystyrene (Z ¼ 34) after a step deformation of λ ¼ 1.8,
performed with a constant crosshead velocity v ¼ 40l0=τR. (c) Upper panel: Expansion coefficient S02ðQÞ before and after the chain
retraction, calculated using the affine model and Doi-Edwards (DE) model, respectively. Lower panel: Predictions from the GLaMM
model. Our choice of the GLaMM parameters follows the standard practice in the literature [20].
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GLaMMmodel for quantitative predictions [Fig. 3(c), lower
panel]. First, the GLaMM model still faithfully captures the
two unique features of chain retraction, i.e., peak shift and
anisotropy inversion. Moreover, the original Doi-Edwards
model and the GLaMM model produce consistent calcu-
lations about the magnitude of the peak shift. Beyond Rouse
time, the GLaMM model predicts that S02ðQÞ continues to
relax towards the equilibrium state without much change in
the peak position, in agreement with the idea that relaxation
after chain retraction is orientational.
The above calculations and analyses powerfully dem-

onstrate that the spherical harmonic expansion technique
allows us to directly translate the physical idea of chain
retraction into unique and intuitive spectral patterns. More
importantly, it provides a platform for us to bring together
theory and experiment, and to critically test, for the first
time, the retraction hypothesis in a model-independent,
nonlinear-fitting-free manner.

V. NEW RESULTS AND DISCUSSIONS

A. Experimental methods

Equipped with new insight from spherical harmonic
expansion analysis, we carry out a critical examination of

the chain retraction hypothesis of the tube model, by using
small-angle neutron scattering. Our experimental system is
based on the mixture of protonated and deuterated poly-
styrene (PS) homopolymers that are synthesized by anionic
polymerization in benzene with sec-butyllithium as the
initiator (h-PS:Mw ¼ 450 kg=mol,Mw=Mn ¼ 1.06; d-PS:
Mw ¼ 510 kg=mol, Mw=Mn ¼ 1.04). The h-PS and d-PS
are dissolved at an h=d ratio of 5=95 in toluene, fully
mixed, and precipitated in excess methanol. The resulting
blend is dried in a vacuum oven first at room temperature
and then at 130 °C to completely remove the residual
solvents.
The linear viscoelastic properties of the blend are char-

acterized on an HR2 rheometer (TA Instruments) by small
amplitude oscillatory shear measurements in the frequency
range 0.1–100 rad=s and at temperatures between 200 °C
and 120 °C. Figure 4(a) shows the master curve for the
dynamic moduli (G0 andG00) at 130 °C, constructed by using
the time-temperature superposition principle [134]. The
average number of entanglements per chain Z is estimated
to be 34 for this system (Z ¼ GeMw=ρRT, withGe being the
plateau modulus and ρ the polymer density). We evaluate
the Rouse relaxation time τR using three different methods:
the classical tube model formula (τR ¼ τ=3Z, with τ

FIG. 4. (a) Linear viscoelastic properties of the mixture of d-PS and h-PS at 130 °C. (b) Stress relaxation behavior after a step
deformation of λ ¼ 1.8, performed with a constant crosshead velocity v ¼ 40l0=τR. (c) Expansion coefficients S0l ðQÞ at t ¼ 0, τR, and
10τR. The solid lines are computed according to the affine deformation model for λ ¼ 1.8. The SANS data are collected on the NGB30
SANS beam line at NIST.
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being the reptation time) [135], the Osaki formula
[τR ¼ ð6Mwη=π2ρRTÞð1.5Me=MwÞ2.4, with η being the
zero-shear viscosity and Me the entanglement molecular
weight] [136,137], and the Likhtman-McLeish theory [12],
which yield 251, 592, and 715 s, respectively at 130 °C. In
this work, we choose to use Osaki’s formula, as it overcomes
the well-known problem with the classical tube model
formula and is yet much more straightforward than the
Likhtman-McLeish theory.
The specimens for the SANS measurements are prepared

on an RSA-G2 Solids Analyzer from TA Instruments
(Fig. 4(b)]. The temperature is controlled by the forced
convection oven of the RSA-G2, using nitrogen as the gas
source. Rectangular samples are uniaxially stretched at
130 °C to λ ¼ 1.8, with a constant crosshead velocity
v ¼ 40l0=τR, where l0 is the initial length of the sample.
The samples are allowed to relax for different amounts of
time (from 0 to 20τR) at 130 °C and then immediately
quenched by pumping cold air into the oven. At 130 °C, the
Rouse time of the sample is about 10 min, whereas the
terminal relaxation time is on the order of 7 h. Furthermore,
since the test temperature is only about 30 °C above Tg, the
relaxation time increases sharply with decreasing temper-
ature. In our experiment, it takes less than 10 s for the
temperature to drop from 130 °C to 125 °C, at which point
the chain relaxation is already exceedingly slow. Therefore,
we are able to effectively freeze the conformation of the
polymer chain with negligible stress relaxation during the
quenching procedure.
Small-angle neutron scattering measurements of the

quenched glassy polystyrene films are performed on the
NGB30 SANS diffractometers at the Center for Neutron
Research ofNIST.Twowavelengths of incident neutrons, 6.0
and 8.4 Å, are used to cover a range of scatteringwave vector
Q from0.001 to0.1 Å−1. Themeasured intensity is corrected
for detector background and sensitivity, and placed on an
absolute scale using a direct beam measurement.

B. Spherical harmonic expansion analysis

Figure 4(c) presents spherical harmonic expansion coef-
ficients S0l ðQÞ (l ¼ 0, 2, 4, 6) immediately after the step
deformation (t ¼ 0), and at τR and 10τR. As a reference, we
also plot the coefficients of the affine deformation model
for λ ¼ 1.8. First, Fig. 4(c) nicely illustrates the benefit of
performing spherical harmonic decomposition. The iso-
tropic component S00ðQÞ, which does not change signifi-
cantly from t ¼ 0 to t ¼ 10τR, makes a major contribution
to the 2D spectrum. On the other hand, the relaxation of the
anisotropic coefficients S02ðQÞ and S04ðQÞ is clearly visible
during the same period of time. Therefore, it makes sense to
separate these different components via the spherical
harmonic decomposition technique, rather than directly
perform analysis on the composite 2D spectra [Fig. 1(b)],
which do not exhibit any characteristic features. Second,
the affine model seems to give a satisfactory description of
the molecular deformation during the step uniaxial stretch-
ing [Fig. 4(c), left-hand panel], although upon closer
examination, we do find that the affine model slightly
overestimates the anisotropy at high Q’s (not visible on the
scale of the current plot). This result should be expected,
because the step deformation is performed with a high
strain rate—the initial Rouse Weissenberg number (τRv=l0)
in this case is 40.
Our analysis in Sec. IV reveals that the chain retraction

mechanism should give rise to two distinct spectral features
for the leading anisotropic component S02ðQÞ: peak shift
and anisotropy inversion. Now let us turn to this critical test
of the retraction hypothesis and examine the evolution of
S02ðQÞ during the stress relaxation. Figure 5 shows the
expansion coefficients S02ðQÞ at t ¼ 0, 0.5τR, τR, 3τR, 10τR,
and 20τR. The black dashed line marks the peak position
immediately after the step deformation (t ¼ 0), whereas the
gray dashed line indicates the theoretically expected peak
position after full chain retraction, at t ≈ τR. As we point
out in Sec. IV, the “simple” Doi-Edwards model and the

FIG. 5. Evolution of the expansion coefficient S02ðQÞ. The vertical gray dashed line indicates the theoretically expected peak position
after full chain retraction. The SANS data are collected on the NGB30 SANS beam line at NIST.
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more sophisticated GLaMM model give the same predic-
tion for the peak position after retraction.
It is evident from Fig. 5 that the unique scattering

patterns [Fig. 3(c)] associated with chain retraction are
not experimentally observed. The peak shift is negligible
up to 20 times the Rouse relaxation time, suggesting there
is no strong decoupling of stretch and orientation relaxa-
tion. Furthermore, there is no anisotropy inversion either:
the anisotropy decays monotonically with time at all Q’s.
Here, we emphasize the model-independent nature of the
spherical harmonic expansion analysis—it is simply a
different way of presenting the “raw” 2D data. Unlike
the previous investigations, there is no ambiguity associ-
ated with model fitting and no room for human bias.
Therefore, our critical test clearly demonstrates that the
chain retraction hypothesis of the tube model is not
supported by small-angle neutron scattering experiments.

C. Analysis of radii of gyration

Having reviewed the evidence from spherical harmonic
expansion analysis, let us now return to the traditional
analysis of the radius of gyration tensor. As we explain in
Secs. II and IV, it is not feasible to extract Rg from the
SANS measurement using model-independent Guinier
analysis due to the large size of the polymer chain.
Following the common procedure in the literature, we
apply a modified Debye function to determine the Rg in the
parallel and perpendicular directions to stretching:

I¼ 2I0½e−ðQ∥;⊥R∥;⊥
g Þ2 þðQ∥;⊥R∥;⊥

g Þ2−1�=ðQ∥;⊥R∥;⊥
g Þ4þ Iinc;

ð15Þ

where I0 is the forward scattering intensity and Iinc is the
incoherent background. However, we stress that Eq. (15)
should only be taken as an approximate form for the
scattering intensity in the intermediate- and low-Q range.
The purpose of our analysis is to put our current results in
perspective with the existing reports in the literature.
Figure 6(a) shows the evolution of the radius of gyration

during the stress relaxation for both parallel and
perpendicular directions. While the tube theory predicts
that chain retraction would lead to a nonmonotonic change
of radius of gyration in the perpendicular direction to
stretching [Fig. 3(b)], experimentally, we observe that the
Rg in both perpendicular and parallel directions relax
monotonically towards the equilibrium value. This result
is consistent with the findings of Maconnachie et al. [25]
and Boué et al. [26,27], but at odds with the report of
Blanchard et al. [32]. To further demonstrate that the fitting
by Eq. (15) does faithfully capture the qualitative behavior
of the radius of gyration, we present the absolute scattering
intensity in the perpendicular direction during the stress
relaxation in Fig. 6(b). We do observe a systematic and
monotonic “shift” of scattering profile towards lower Q

with increasing relaxation time for all the data points we
have collected; for the sake of clarity in presentation, only
the data for t ¼ 0, τR, and 10τR are shown here. Therefore,
as long as the fitting procedure is consistently applied
over a relatively wide Q range, we should obtain only a
monotonic trajectory for the Rg in the perpendicular
direction.
In this context, we further point out a troubling feature in

the paper of Blanchard et al. Their Fig. 2(a) shows that in
the parallel direction Rg at 0.4τR is larger than that at
0.005τR (t ≈ 0). Upon closer examination, it appears that
the difference is slightly greater than the uncertainty
represented by the error bars. If so, it would imply that
the sample was further stretched during the stress relaxa-
tion, which apparently violates the second law of thermo-
dynamics. This puzzling trend suggests the work of
Blanchard et al. might have some experimental issues,
as we briefly discuss below, in Sec. V E.

D. Discussion of possible explanations

Since the analyses of the spherical harmonic expansion
coefficient S02ðQÞ and the radii of gyration both reject the
characteristic signature of chain retraction, we are now
confronted by the inevitable question: what is the explan-
ation for the observed SANS results, if the chain retraction
hypothesis does not hold? First, while the tube model is

FIG. 6. (a) Evolution of the radius of gyration in the parallel and
perpendicular directions to stretching. R∥

g;0 and R⊥
g;0 are the

equilibrium radius of gyration in the parallel and perpendicular
directions, respectively. Obviously, R∥

g;0 ¼ R⊥
g;0. (b) Evolution of

the absolute scattering intensity in the perpendicular direction.
The SANS data are collected on the NGB30 SANS beam line
at NIST.
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founded on the assumption of affine deformation of the
tube [6,138], the idea of nonaffine tube deformation has
been floating around for quite some time, particularly in the
case of cross-linked systems [139,140]. However, incor-
porating this idea into a dynamic theory of polymeric
liquids is still an uncharted territory. Furthermore, the major
discrepancy between theory and experiment occurs during
the stress relaxation rather than the stress growth, as the
chain conformation immediately after the step deformation
can be approximated by the affine model [Fig. 4(c), t ¼ 0].
Therefore, without an alternative mechanism for molecular
relaxation, the idea of nonaffine deformation alone does not
seem to be able to explain the experimental observation.
Second, is it possible that the chain retraction does take

place, but some other nonlinear effects, unanticipated by
the original Doi-Edwards theory, are responsible for the
absence of the scattering signature of retraction in SANS?
For example, the interplay between test chain motion and
topological constraints has been widely recognized
[16,20,141–145]. Could constraint release (CR) during
retraction lead to the observed scattering patterns? There
is no easy answer to this question. Despite the recent
herculean effort by Sussman and Schweizer [141–145] to
model the topological constraints in a self-consistent
manner, their theory has not yet produced any predictions
about SAS behavior for us to compare with our experi-
ments. At this moment, the only available option for us to
quantitatively explore the “constraint release” effect is the
GLaMM model, in which the CR can be controlled by
tuning the model parameter cν. Our calculations show,
however, that varying cν from 0.1 to 1.0 does not change
the model prediction of the SANS spectrum for the current
step-strain experiment in a substantial way. Additionally,
contrary to the prediction of the tube model [37,39,146],
the stress relaxation of our sample (Fig. 7) is in agreement
with the “quasilinear” behavior previously identified by
Cheng et al. [39]—the stress relaxation curves at small
strain (λ ¼ 1.14) and large strain (λ ¼ 1.80) can be col-
lapsed by applying an affine scaling to stress. The chain
retraction mechanism, on the other hand, would produce a
two-step relaxation for λ ¼ 1.8 [Fig. 7(a)]. It thus seems
unlikely that introducing an additional strong nonlinear CR
effect into the tube model would account for the quasilinear
stress relaxation behavior observed experimentally. Our
GLaMM calculations indeed confirm that increasing cν
would result in more pronounced stress drop during
relaxation, which is inconsistent with experiment.
It is interesting to point out a “nonclassical proposal” that

de Gennes [147] made many years ago upon learning the
SANS investigations by Boué et al. [26,27]. The fact that
the signature of retraction was sought but not found in
Boué’s studies prompted de Gennes to suggest that the
chain may indeed not retract at all. However, the proposal
by de Gennes leads to the prediction that “there is no strong
shear dependence of the viscosity for a monodisperse melt,”

which clearly contradicts the overwhelming shear-thinning
data in the literature.
What about the work by Viovy [148], who, upon hearing

the results of Boué, also proposed his own explanation for
the absence of chain retraction in SANS experiments?
Viovy’s proposal consists of two crucial components: one
is the loss of topological constraints on one chain due to the
retraction of neighboring chains, and the other is the
screening of retraction due to contour length fluctuation.
First, as we discuss above, the idea of loss of entanglements
at λ ¼ 1.8 does not seem to be compatible with the
quasilinear experimental stress data, which already lacks
the feature of accelerated relaxation due to chain retraction
(Fig. 7). Second, contour length fluctuation is already
incorporated in the calculations with the GLaMM model,
but its effect on the qualitative behavior of the SANS
spectrum is minimal. Overall, the ideas of Viovy have not
been fully developed to yield a complete microscopic
model for entangled polymers. This makes it difficult for
us to thoroughly evaluate his proposal. In particular, since
Rg is not an ideal quantity for comparison of theory and
experiments, analysis of SðQÞ through the spherical har-
monic expansion technique is the preferred approach.
Unfortunately, this has not been done in Ref. [148].
So what could be the explanation for the experimental

result (Fig. 5)? We are currently not in a position to propose
our own theory. However, we add a few more comments
before leaving this section. First, it should be emphasized
that although a stretched chain obviously needs to “retract”
in order to return to its equilibrium state, the concept of

FIG. 7. Stress relaxation behavior at two different strains
λ ¼ 1.14 and λ ¼ 1.80. Here, following the approach of
Ref. [39], the measured engineering stress σeng is normalized
by Ge½λ − 1=λ2�, where λ is the imposed strain. (a) Theoretical
predictions from the GLaMM model. (b) Experimental results.
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“chain retraction” is a construct of the tube model. It refers
specifically to the restoration of the arc length of the
primitive chain defined by the “tube.” Therefore, the lack of
evidence for chain retraction does not imply that the chains
do not relax. On the contrary, both the stress measurements
[Fig. 4(b)] and SANS patterns (Fig. 5) suggest that the
system does continuously relax towards the equilibrium
state. Therefore, the issue of chain retraction is about the
pathway through which the chain relaxes. In other words, it
is a matter of the particular molecular relaxation mecha-
nism that an entangled polymer undergoes after a step
deformation. Second, the signature patterns of chain
retraction in SANS experiments are the consequence of
the assumption of “decoupled” stretch and orientation
relaxation in the tube model. The peak shift and anisotropy
inversion are directly tied to the physical picture that the
contour length equilibrates on the time scale of τR, while it
takes τ to completely relax the orientation through repta-
tion. Our analysis with a network-type phenomenological
model [149] suggests that it is possible to simultaneously
describe both the SANS spectrum and stress by assuming
coupled stretch and orientational dynamics. The details of
our quantitative analysis will be published in a future paper.

E. Comments on the previous work

At this point, it seems imperative for us to comment on
the previous work of Blanchard et al. [32], which is the
only paper in the literature that claims direct observation of
chain retraction by SANS. Their report contradicts not only
the current work, but also at least two other independent
studies [25,26]. Rather than speculating what might have
gone wrong in the work of Blanchard et al., we instead
emphasize the steps we take to improve the execution of the
experiments and data analysis.
First, our stretching experiments are conducted in the

forced convection oven of the RSA-G2 Solids Analyzer
(TA Instruments), which is a well-tested commercial
sample environment. We further verify the uniformity
and stability of the temperature by monitoring the built-
in upper and lower resistance temperature detectors of the
oven, as well as an additional resistance temperature
detector that we attach to the lower sample clamp.
Second, prior to the final SANS experiments at NIST, we

cross-examine the performance of three beam lines (the
NGB30SANSbeam line at NIST, theEQ-SANSat SNS, and
the D22 at ILL) for 2D data analysis, where every “pixel”
counts. We confirm that all three beam lines give consistent
results for the same quenched samples and rule out any
uncertainty due to the performance of the instrument.
Third, we take care to provide a complete characteriza-

tion of both the linear and nonlinear viscoelastic properties
of the sample. Detailed rheological information was not
available in most of the previous investigations on this
topic [25,26,32]. This lack of sufficient information on
viscoelastic behavior, in our opinion, has hampered

discussions of the existing SANS experiments on deformed
polymers. The consistency of our stretching experiments on
RSA-G2 is demonstrated by the recorded stress response
[Fig. 4(b)]—the stress rise and relaxation data of different
runs essentially collapse onto the same envelope.
Fourth, the width and thickness of our quenched samples

are carefully measured. We verify that the dimensions of
the samples are consistent with the applied macroscopic
strain. It is important to note that accurate sample thickness
is critical for determination of the absolute scattering
intensity. The work of Blanchard et al. did not describe
how the sample thickness was obtained—this is a nontrivial
issue for their soft, compressible polyisoprene sample. In
contrast, the thickness measurement for the high-Tg poly-
styrene is rather straightforward.
Fifth, we confirm that our quenched samples have

uniform stress distribution by performing birefringence
measurements. It appears that none of the previous studies
[25,26,32] conducted such a test to verify the qualities of
their samples. This was particularly a challenge for
Blanchard et al., as their low-Tg sample could be examined
only in situ, i.e., on the SANS beam line.
Sixth, we perform the stretching and relaxation experi-

ments at the same temperature for all the samples. This
design avoids the potential complications in the previous
studies [26,32] that utilized the time-temperature super-
position principle [134].
Last, but not least, as we repeatedly stress in this article,

our spherical harmonic expansion approachmakes full use of
the entire 2D SANS spectrum, as opposed to the traditional
method based on partial information along parallel and
perpendicular directions. Moreover, the model-independent
nature of the method allows us to circumvent the ambiguity
associated with Rg analysis.

VI. CONCLUDING REMARKS AND SUMMARY

In summary, building on the idea of spherical harmonic
decomposition, we develop a new framework to fingerprint
macromolecular deformation from small-angle scattering
experiments. The spherical harmonic expansion analysis
permits a direct and unambiguous comparison of SANS
experiments with the theoretical picture of the tube model.
The chain retraction hypothesis of the tube model is not
supported by the new SANS measurements of well-
entangled polystyrenes after a large step uniaxial extension.
Since the tube theory is of paramount importance for our
current understanding of the flow and deformation behavior
of entangled polymers, the invalidation of the chain
retraction hypothesis has immense ramifications. It should
be emphasized, however, that the current investigation is
only concerned with the tube approach in the nonlinear
rheological regime. In other words, our work does not
question the linear part of the tube theory. Conversely,
studies of contour length fluctuations in the equilibrium
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state [150] should not be used to infer the validity of chain
retraction in the nonequilibrium state.
Finally, although the application of small-angle scatter-

ing in deformed polymers has a long history, the full power
of the rheo-SAS technique is yet to be unearthed. The
spherical harmonic expansion approach we employ in this
work is surely not limited to entangled polymeric liquids,
but is also applicable to a wide variety of complex fluids
and soft solids. The spectrum decomposition method not
only provides a convenient way for comparing experimen-
tal results with the predictions from statistical and molecu-
lar models, but also allows many new questions to be asked,
including the affineness, symmetry, and heterogeneity of
macromolecular deformation.
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