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The geographical pattern of human dialects is a result of history. Here, we formulate a simple spatial
model of language change which shows that the final result of this historical evolution may, to some extent,
be predictable. The model shows that the boundaries of language dialect regions are controlled by a length
minimizing effect analogous to surface tension, mediated by variations in population density which can
induce curvature, and by the shape of coastline or similar borders. The predictability of dialect regions
arises because these effects will drive many complex, randomized early states toward one of a smaller
number of stable final configurations. The model is able to reproduce observations and predictions of
dialectologists. These include dialect continua, isogloss bundling, fanning, the wavelike spread of dialect
features from cities, and the impact of human movement on the number of dialects that an area can support.
The model also provides an analytical form for Séguy’s curve giving the relationship between geographical
and linguistic distance, and a generalization of the curve to account for the presence of a population center.
A simple modification allows us to analytically characterize the variation of language use by age in an area
undergoing linguistic change.
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I. INTRODUCTION

Over time, human societies develop systems of belief,
languages, technology, and artistic forms that collectively
may be called culture. The formation of culture requires
individuals to have ideas, and then for others to copy them.
Historically, most copying has required face-to-face inter-
action, and because most human beings tend to remain
localized in geographical regions that are small in com-
parison to the world, human culture can take quite different
forms in different places. One aspect of culture where
geographical distribution has been studied in great detail is
dialect [1].
In order to visualize the spatial extent of dialects,

dialectologists have traditionally drawn isoglosses: lines
enclosing the domain within which a particular linguistic
feature (a word, a phoneme, or an element of syntax) is
used. However, it is not usually the case that language use
changes abruptly at an isogloss—typically there is a
transition zone where a mixture of alternative features is
used [1]. In fact, there is debate about whether the most
appropriate way to view the geographical organization of
dialects is as a set of distinct areas or as a continuum

without sharp boundaries [1–3]. Whereas an isogloss
represents the extent of an individual feature, a recogniz-
able dialect is typically a combination of many distinctive
features [1,4]. We can attempt to distinguish dialects by
superposing many different isoglosses, but often they do
not coincide [3], leading to ambiguous conclusions.
The first steps toward an objective, quantitative analysis

of the shapes of dialect areas were made by Séguy [5,6],
who examined large aggregates of features, making com-
parison between lexical distances and geographic separa-
tions. Central to the quantitative study of dialects, called
dialectometry (see Ref. [7] for a recent review), is the
measurement of linguistic distance which, for example, can
be viewed as the smallest number of insertions, deletions,
or substitutions of language features needed to transform
one segment of speech into another [8]. This “Levenshtein
distance” was originally devised to measure the difference
between sequences [9]. Using a metric of this kind, a set of
dialect observations can be grouped into clusters according
to their linguistic (as opposed to spatial) closeness [10–13].
The clusters then define geographical dialect areas.
The question we address is why dialect domains have

particular spatial forms, and to give a quantitative answer
requires a model. The question has been addressed in the
past, famously (amongst dialectologists) by Trudgill and
co-workers [1,14], with his “gravity model.” According to
this, the strength of linguistic interaction between two
population centers is proportional to the product of their
populations, divided by the square of the distance between
them. The influence of a settlement (e.g., a city) i on
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another j is then defined to be the product of interaction
strength with the ratio Pi=ðPi þ PjÞ, where Pi and Pj are
the population sizes of settlements i and j. These additive
influence scores may then be used to predict the progress of
a linguistic change that originated in one city, by determin-
ing the settlements over which it exerts the greatest net
influence. It is then predicted that the change progresses
from settlement to settlement in a cascade. Predictions may
also be made regarding the combined influence of cities on
neighboring nonurban areas. The model has been partially
successful in predicting observed sequences of linguistic
change [1,15–17], and offers some qualitative insight into
the most likely positions of isoglosses [14]. In this paper,
we offer an alternative model, also based on population
data, which makes use of ideas from statistical mechanics.
Rather than starting with a postulate about the nature of
interactions between population centers, we begin with
assumptions about the interactions between speakers. From
these assumptions about small-scale behavior we derive
predictions about macroscopic behavior. This approach
has the advantage of making clear the link between
individual human interactions and population-level behav-
ior. Moreover, we are able to unambiguously define the
dynamics of the model and make precise predictions about
the locations of isoglosses, the nature of transition regions
between linguistic forms, and the most likely structure of
dialect domains. There are links between our approach and
agent-based models of language change [18], which
directly simulate the behavior of individuals. The difference
between this approach and ours lies in the fact that for us,
assumptions about individual behavior lead to equations for
language evolution which are macroscopic in character.
These equations have considerable analytical tractability
and offer a simple and intuitive picture of the large-scale
spatial processes at play.
In seeking to model the spatial distribution of language

beginning with the individual, we are encouraged by the
fact that dialects are created through a vast number of
complex interactions between millions of people. These
people are analogous to atoms in the physical context, and
when very large numbers of particles interact in physical
systems, simple macroscopic laws often emerge. Despite
the fact that dialects are the product of hundreds of years of
linguistic and cultural evolution [4], and thus historical
events must have played a role in creating their spatial
distribution [19], the physical analogy suggests that it may
be possible to formulate approximate statistical laws that
play a powerful role in their spatial evolution.
A physical effect analogous to the formation of dialects is

phase ordering [20]. This occurs, for example, in ferromag-
netic materials, where each atom attempts to align itself with
neighbors. If the material is two dimensional (a flat sheet),
this leads to the formation of a patchwork of domains where
all atoms are aligned with others in the same domain, but not
with those in other domains. The boundaries between these

regions of aligned atoms evolve so as to minimize boundary
length [21,22]. The human agents who interact to form
dialects behave in roughly the same way (as do some birds
[23]). When people speak and listen to each other, they have
a tendency to conform to the patterns of speech they hear
others using, and therefore to “align” their dialects. Since
people typically remain geographically localized in their
everyday lives, they tend to align with those nearby. This
local copying gives rise to dialects in the same way that
short-range atomic interactions give rise to domains in
ferromagnets. However, whereas the atoms in a ferromagnet
are regularly spaced, human population density is variable.
We show that as a result, stable boundaries between domains
become curved lines.
While our interest is in the spatial distribution of

linguistic forms, there are other properties of language
for which parallels with the physical or natural world can be
usefully drawn, and corresponding mathematical methods
applied. For example, the rank-frequency distribution of
word use, compiled from millions of books, takes the form
of a double power law [24,25], which can be explained [24]
using a novel form of the Yule process [26,27], first
introduced to explain the distribution of the number of
species in genera of flowering plants. Historical fluctua-
tions in the relative frequency with which words are used
have been shown to decay as a language ages and expands
[25], analogous with the cooling effect produced by the
expansion of a gas. Methods used to understand disorder in
physical systems (“quenched” averages) have been applied
to explain how a tendency to focus on topics controls
fluctuations in the combined vocabulary of groups of texts
[28]. A significant focus of current statistical physics
research has been on the evolution and properties of
networks [29], which have many diverse applications from
the spread of ideas, fashions, and disease [30] to the
vulnerability of the internet [31]. Real networks are often
formed by “preferential attachment” where new connec-
tions are more often made to already well-connected nodes,
leading to a “scale-free” (power-law) distribution of node
degree. The popularity of words has been shown to evolve
in the same way [32]; words used more in the past tend to
be used more in the future. Beyond the study of word use
and vocabulary, agent-based models such as the naming
game [33], used to investigate the emergence of language,
and the utterance selection model [34], used to model
changes in language use over time, have been particularly
influential. We follow the latter model by representing
language use using a set of discrete linguistic variables.
Spatial models motivated by concepts of statistical physics
have also been used to study the spread of crime [35] and to
devise optimal vaccination strategies to prevent disease
[36]. The importance of the emergence of order in social
contexts, and connections to statistical physics, may be
found in a wide-ranging review [37] by Castellano et al.
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II. SUMMARY FOR LINGUISTS

A. Contents of the paper

The aim of this paper is to adapt the theory of phase
ordering to the study of dialects, and then to use this theory
to explain aspects of their spatial structure. For those
without a particular mathematical or quantitative inclina-
tion, the model can be simply explained: We assume that
people come into linguistic contact predominantly with
those who live within a typical travel radius of their home
(around 10–20 km). If they live near a town or city, we
assume that they experience more frequent interactions
with people from the city than with those living outside it,
simply because there are many more city dwellers with
whom to interact. We represent dialects using a set of
linguistic variables [1], and we suppose that speakers have
a tendency to adapt their speech over time in order to
conform to local conventions of language use. Our model is
deliberately minimal: these are our only assumptions. We
discover that, starting from any historical language state,
these assumptions lead to the formation of spatial domains
where particular linguistic variants are in common use, as
in Fig. 2. We find that the isoglosses that bound these
domains are driven away from population centers, that they
tend to reduce in curvature over time, and that they are most
stable when emerging perpendicular to borders of a
linguistic domain. These theoretical principles of isogloss
evolution are explained pictorially in Figs. 3, 4, and 5, and
provide a theoretical explanation for a range of observed
phenomena, such as the dialects of England (Fig. 7), the
Rhenish fan (Fig. 10), the wavelike spread of language
features from cities (Figs. 12 and 16), the fact that narrow
regions often have “striped” dialects (Fig. 11), and that
coastal indentations including rivers and estuaries often
generate isogloss bundles. Our assumptions also lead to a
mathematical expression for the relationship between
linguistic and geographical distance—the Séguy curve—
and a hypothesis regarding the question of when dialects
should be viewed as a spatial continuum, as opposed to
distinct areas (Fig. 19).

B. How might a linguist make use of this work?

Without using mathematics, but having understood our
principles of isogloss evolution and considered the exam-
ples set out in this paper, further cases may be sought where
the principles explain observations. If the principles cannot
explain a particular situation or are violated, one might seek
to understand what was missing from the underlying
assumptions, or if they were wrong. Since the assumptions
are so minimal, they cannot be the whole story, and a
discussion of possible missing pieces is given in Sec. VIII.
For the mathematically inclined linguist, Appendix A sets
out an elementary scheme for solving the fundamental
evolution equation on a computer. This scheme also offers a
simple and intuitive understanding of the model, and can be

implemented using only a spreadsheet (see Supplemental
Material [38]), although a computer program would be
much faster. Using this, isogloss evolution can be explored
in linguistic domains with any shape and population
distribution. The simplicity of the scheme invites adapta-
tion to include more linguistic realism (e.g., bias toward a
linguistic variant). Beyond the exploration of individual
isoglosses, a line of inquiry that may be of interest to
dialectometrists is to test our predicted forms of Séguy’s
curve against observations.

III. MODEL

Our aim is to define a model of speech copying which
incorporates as few assumptions as possible, while
allowing the effect of local linguistic interaction and
movement to be investigated. The model has its roots in
the ideas of the linguist Bloomfield [3], who believed that
the speech pattern of an individual constantly evolved
through his or her life via pairwise interaction. This
microscopic view of language change led to the prediction
that the diffusion of linguistic features should follow routes
with the greatest density of communication. Bloomfield
defined this as the density of conversational links between
speakers accumulated over a given period of time. In our
model, the analogy of this link density is an interaction
kernel weighted by spatial variations in population distri-
bution. We implicitly assume that interaction is inherently
local so that linguistic changes spread via normal contact
[39], rather than via major displacements, conquests,
or dispersion of settled communities. We are, therefore,
modeling language in stable settlements, with initial con-
ditions set by the most recent major population upheaval.
We consider a population of speakers, each of whom has

a small home neighborhood, and we introduce a population
density ρðx; yÞ giving the spatial variation of the number
homes per unit area. In order to incorporate local human
movement within the model, we begin by defining a
Gaussian interaction kernel for each speaker:

ϕðΔx;ΔyÞ ≔ 1

2πσ2
exp

�
−
Δx2 þ Δy2

2σ2

�
:

Note that the symbol ≔ indicates the definition of a new
quantity. Consider a speaker, Anna, whose home neighbor-
hood is centered on ðx0; y0Þ. In the absence of variation in
population density, ϕ is the normalized distribution of the
relative positions, ðΔx;ΔyÞ, of the home neighborhoods
of speakers with whom Anna regularly interacts. The
constant σ, the interaction range, is a measure of the typical
geographical distance between the neighborhoods of inter-
acting speakers. Now suppose that density is not uniform
due to the presence of a city or a sparsely populated
mountainous area. In this case, while Anna is going about
her daily life she is more likely to hold conversations with
people whose homes lie in a nearby densely populated
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region because these people constitute a greater proportion
of the local population. To incorporate this density effect,
we define a normalized weighted interaction kernel for a
home at ðx0; y0Þ:

kðx0; y0; x; yÞ ≔
ϕðx − x0; y − y0Þρðx; yÞR

R2 ϕðu − x0; v − y0Þρðu; vÞdudv
:

Given any regionA, the fraction of Anna’s interactions that
are with people who live in A is

R
A kðx0; y0; x; yÞdxdy.

We distinguish between dialects by constructing a set of
linguistic variables whose values vary between dialects. A
single variable might, for example, be the pronunciation of
the vowel u in the words “but” and “up” [4]. In England,
northerners use a long form, “boott” and “oopp,” with
phonetic symbol [℧], and southerners use a short version,
[∧]. Considering a single variable which we suppose has
V > 1 variants, we define fiðx; y; tÞ to be the relative
frequency with which the ith variant of our variable is used
by speakers in the neighborhood of ðx; yÞ, at time t. For
mathematical simplicity, we assume that nearby speakers
use language in a similar way, so that fiðx; y; tÞ varies
smoothly with position.
People speak on average 16 000 words per day [40] and

can take months or years (depending on their age and
background) to adapt their speech to local forms [41,42].
Changing speech habits therefore involves a very large
number of word exchanges, at least in the tens of thousands
(comparable in magnitude to typical vocabulary size [43]).
Although the rate at which individuals adapt their speech is
not constant throughout life (it is particularly rapid in the
young), adaptation has been observed even in late middle
age [44]. To capture the cumulative effect of linguistic
interaction we make use of a forgetting curve, which
measures the relative importance of recent interactions to
older ones. From a mathematical point of view, the simplest
form for this curve is an exponential, and in fact there is
some evidence from experiments involving word recall
[45], which suggests that this is an appropriate choice.
However, we emphasize that the curve, for us, is simply a
way to capture the fact that current speech patterns depend
on past interactions and that older interactions tend to be
less important. With this in mind we make the following
definition of the memory of a speaker from the neighbor-
hood of ðx; yÞ, for the ith variant of a variable,

miðx; y; tÞ

≔
Z

t

−∞

eðs−tÞ=τ

τ

�Z
R2

kðx; y;u; vÞfiðu; v; sÞdudv
�
ds ð1Þ

≈
Z

t

−∞

eðs−tÞ=τ

τ

×

�
fiðx; y; sÞ þ

σ2

2ρðx; yÞ∇
2fρðx; yÞfiðx; y; sÞg

�
ds: ð2Þ

An intuitive understanding of this equation may be gained
by imagining that each speaker possesses an internal tape
recorder that records language use as they travel around the
vicinity of their home. As time passes, older recordings
fade in importance to the speaker, and the variable mi
measures the historical frequency with which variable i has
been heard, accounting for the declining importance of
older recordings. The rate of this decline is determined by
the parameter τ, which we callmemory length, and note that
changing its value simply rescales the unit of time. We note
also that this form of memory may be seen as a determin-
istic spatial version of the discrete stochastic memory used
in the utterance selection model [34,46]. On the grounds
that speakers collect very large samples of local linguistic
information, our definition does not contain terms repre-
senting random sampling error. In going from Eq. (1) to (2)
we use the saddle point method [47] to approximate the
spatial integral in Eq. (1) and assume that j∇2ρj=ρ is small
compared to σ2 (that is, population changes approximately
linearly over the length scale of human interaction).
To allow speakers to base their current speech on what

they have heard in the past, we let fiðx; y; tÞ be a function
pi of the set of memories ðm1; m2;…; mVÞ ≕ m:

fiðx; y; tÞ ≔ pi½mðx; y; tÞ�:

Differentiating Eq. (2) with respect to t, and rescaling the
units of time so that one time unit is equal to one memory
length τ, we obtain

∂miðx; y; tÞ
∂t ¼ pi½mðx; y; tÞ� −miðx; y; tÞ

þ σ2

2ρðx; yÞ∇
2fρðx; yÞpi½mðx; y; tÞ�g; ð3Þ

which governs the spatial evolution of the ith alternative for
a single linguistic variable. We note that memory length no
longer appears as a parameter. An enhanced intuitive
understanding of this evolution equation may be gained
from its discrete counterpart, used to find computational
solutions, and derived in Appendix A.
The simplest possible choice for pi is to let speakers use

each variant with the same frequency that they remember it
being used: pi½mðx; y; tÞ� ¼ miðx; y; tÞ. This produces
“neutral evolution” [34,46,48–50], where there is no bias
in the evolution of each variant. Equation (3) then describes
pure diffusion, and variants spread out uniformly over the
system. If all linguistic variables evolved in this way we
would eventually have one spatially homogeneous mixture
of grammar, pronunciation, and vocabulary. If our memory
model involved a stochastic component [46], then even-
tually we would expect all but one variant of each variable
to disappear. Neither of these outcomes reflects the reality
of locally distinctive forms of language.
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We motivate our choice for pi based on two observa-
tions. The first is that dialects exist. In order for this to be
the case, if the ith variant of a linguistic variable has been
established amongst a local population for a considerable
time so that mi ≈ 1, then a small amount of immigration
into the region by speakers using a different variable should
not normally be sufficient to change it. Mathematically,
this is equivalent to the statement that the nondiffusive
term, pi½mðx; y; tÞ� −miðx; y; tÞ, in our evolution equation
[Eq. (3)] must possess a locally stable fixed point atmi ¼ 1.
The second observation is derived from experiments on
social learning, which show that the behavior of individuals
is considerably influenced by the majority opinion of those
with whom they interact [51–53]. In fact, such social
conformity is widely observed in the animal kingdom
and is responsible for the formation of dialects in some
species of birds [54]. Recent experimental research into
human social learning [53], in which individuals were
allowed to make a choice, before being exposed to the
opinions of a group, has revealed that the likelihood of an
individual switching their decision depends nonlinearly on
the proportion of the group who disagree. It is an increasing
function which climbs rapidly when the proportion exceeds
50%, also possessing an inflection for large groups. In the
context of language, such nonlinear conforming behavior
would mean that variants that were used more frequently
than others should be used with disproportionately large
frequency in the future. A simple way to capture this
behavior is to define

piðmÞ ≔ ðmiÞβP
V
j¼1ðmjÞβ

; ð4Þ

where β ≥ 1 measures the extent of conformity (non-
neutrality). If β ¼ 1, we have the neutral model, and for
β > 1, the nondiffusive term in Eq. (3) has a stable fixed
point at mi ¼ 1. According to Eq. (4), individuals dispro-
portionately favor the most common variants they have
heard: they have a tendency to conform to the local majority
language use with β measuring the strength of this effect. In
the limit β → ∞, all speakers use only the most common
(modal) dialect they have heard. An example of this func-
tion is plotted in Fig. 1 for the V ¼ 2 model. Conforming
behavior allows local dialects to form, as we show below.
The model we define is a coarse-grained description of

real linguistic interactions which in reality are much more
complex. Much of this complexity arises because there are
often many distinct class, ethnic, or age-defined social
networks in any given geographical region. Within each of
these subgroups the need to conform leads to similar speech
patterns among members, and these patterns often, but not
always, spread to other groups. Research by linguists has
demonstrated that social factors strongly influence the
uptake of particular speech patterns [55] and that language
use is correlated with social class and identity. In American

English, for example, language change is often initiated by
the working and lower middle classes [56,57], before
spreading to other groups. Some forms of language change
are driven by resistance to conformity; for example
“prestige dialects” (received pronunciation in the UK)
are used to signify membership of a social elite, set apart
from the common people. The desire to set oneself apart
from others can also create reversals in language use
amongst subsets of a population. For example, local
residents of Martha’s Vineyard [58,59] reverted to an
archaic form of pronunciation in order to reaffirm local
tradition in the face of invading tourists. A similar effect
was observed on the island of Ocracoke in North Carolina
[60], but in this case the reversal was temporary. As well as
social factors, language use may also be determined by age,
gender, or ethnicity [61]. It is clear that reality is far more
complex than our simple model, which does not make any
of these distinctions between speakers. However, the fact
that dialects exist is itself evidence that, in general, people
do adapt to local speech patterns. To model every speaker
as having the same need to conform is therefore a
reasonable first approximation to reality. It also has the
value of simplicity, allowing us later to determine the
importance of various additional levels of complexity by
comparing how effectively our model fits empirical data
when compared to more complex models.

IV. SYNTHETIC DIALECT MAPS

A. Application to Great Britain

We apply our model to the island of Great Britain (GB),
whose early inhabitants were known as Britons, and spoke

FIG. 1. Dashed line shows the function p1ðmÞ≡ f1, defined by
Eq. (4) for the V ¼ 2 model with conformity number β ¼ 2.
Dotted line shows the neutral version p1ðmÞ ¼ m1 (when β ¼ 1)
for comparison. Solid line shows the function p1ðmÞ −m1 in the
case β ¼ 2, giving the time derivative of the memory in the
absence of spatial variation. Note that the dashed line shows that
when speakers’ memories contain a majority of variant 1, they
use this variant in a greater proportion than they recall it being
used. This leads to progressively greater levels of conformity:
more speakers using variant 1.
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Celtic languages [62]. The earliest form of English was
brought to the island by invading Germanic-speaking
settlers. This became Anglo Saxon (or Old English), as
written by Alfred, King of Wessex (849–899 A.D.), but
would not be recognizable to modern speakers. It slowly
changed, with external influences (notably Norman), into
the English we know today [19].
We seek to discover the extent to which the spatial

distribution of dialect structures that have emerged in GB
can be predicted by Eq. (3). To model the evolution of
individual linguistic variables we take mainland GB as our
spatial domain, and numerically solve Eq. (3) on a grid of
discrete points (Fig. 2) using an explicit Euler scheme [63]
(Appendix A). The initial condition for the solution is a
randomly generated spatial frequency distribution where
each grid point is assigned a randomly selected variant. By
repeatedly generating initial conditions and solving the
system, we can determine the most probable equilibrium
spatial distributions of language use. The population
density ρðx; yÞ is estimated using 2011 census data [64],
which gives the number of inhabitants at each of the ≈1.8 ×
106 UK postcodes. A smooth density is then obtained from
this by allowing the inhabitants to diffuse a short distance
from the geographical center of their postcode. Despite
significant overall population growth, the locations of
major population centers in GB can trace their origins

back through hundreds of years. Since dialect evolution
equation (3) depends only on relative population densities,
the current density distribution therefore serves as reason-
able proxy for historical versions. We estimate that σ lies in
the range 5 < σ < 15 km based on that fact that the
average distance traveled to work in GB in 2011 was
15 km [64], whereas the average distance traveled to
secondary school was 5.5 km [65]. In Sec, VII, we find
that the typical width of a transition region between
linguistic variables is ≈1.8σðβ − 1Þ−1=2. For example, the
transition between northern and southern GB dialects is
≈60 km wide [1], which, if σ ¼ 10 km, gives the approxi-
mation β ≈ 1.1.

1. Evolution of isoglosses

When it comes to interpreting our results, the fact that
usage frequencies are continuously varying through space
presents a similar problem to that faced by dialectologists
when trying to draw isoglosses. We resolve this by defining
domain boundaries to be lines across which the modal
(most common) variant changes. A domain is therefore a
region throughout which a single variant is the most
commonly used. We may think of domain boundaries as
synthetic isoglosses generated by Eq. (3). In Fig. 2, we
show a series of snapshots of the evolution of domains
when there are V ¼ 3 variants. Isogloss evolution is driven
by a two-dimensional form of surface tension [66]: in the
absence of density variation, curved boundaries straighten
out. Figure 3 illustrates why this happens faster when
curvature is greater. Here, speaker L hears more of variant
A, so domain B will retract in this locality. Speaker R hears
more of variant B, and so domain A will retract in this
region. The net effect will be to straighten the boundary,
reducing its length. If a boundary forms a closed curve,
then this length reduction effect can cause it to evolve
toward a circular shape, and reduce in area, eventually
disappearing altogether. However, this shrinking droplet
effect can be arrested or reversed if the droplet surrounds a
sufficiently dense population center (a city). In fact,
population centers typically repel isoglosses in our model,
and so have a tendency to create their own domains. An
explanation of this effect is given in Fig. 4. Here, we have a

FIG. 2. Evolution of the V ¼ 3 model from randomized
initial condition with σ ¼ 15 km and β ¼ 1.1 at times
t ∈ f1; 2; 4; 8; 16; 32g, where one time unit corresponds to one
memory length. Colors indicate which variant is most common at
each position. Numerical solution implemented in C++ on grid
with 2-km spacing [63] (GB is ≈1000 km north to south). Each
grid point initialized with randomly selected variant.

FIG. 3. The surface tension effect at domain boundaries. Blue
dots represent speakers and black circles give an approximate
representation of interaction ranges. In the red shaded parts of
these interaction ranges, variant A is more common, and in the
yellow shaded parts, variant B is more common.
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region of high population density in which linguistic
variant B is dominant, surrounded by a low-population
density region where variant A is in common use. We
consider the linguistic neighborhood of a speaker located
on the isogloss separating the two domains. From Fig. 4 we
see that although the majority of the speaker’s interaction
range lies in region A, she has many more interactions with
those in region B, and is therefore likely to adapt her speech
toward variant B, causing the isogloss to shift outward into
the low-density area.
The most common form of stable isogloss generated by

our model is a line, typically with some population density
induced curvature, connecting two points on the boundary
of the system. In order to be stable, such lines must emerge
perpendicular from system boundaries, and as a result they
are attracted to indentations in coastline, as illustrated in
Fig. 5. In this figure, we consider two speakers located at
the points where two possible isoglosses meet the coast (or
other system boundary—a country border or a mountain
range, for example). Speaker R, on the dashed isogloss,
hears more of variant B because the isogloss is not
perpendicular to the coast; it will therefore migrate upward
toward the apex of the coastal indentation until it reaches
the stable form shown by the solid line. This effect can be
seen in Fig. 2, where the longest east-west isogloss has
migrated so that it emerges from the largest indentation on
the east coast of GB. In reality this indentation, called “the
wash,” is the site of an isogloss bundle (the coincidence of
several isoglosses) separating northern [℧] from southern
[∧] [67]. A similar bundle occurs at the largest indentation

in the Atlantic coast of France: the Gironde estuary [1],
separating the langue d’oc from the langue d’oil. The fact
that bundling at such locations is predicted by our model
provides the first sign of the predictive power of the surface
tension effect.
Having considered the evolution of a single linguistic

variable, we now turn to modeling dialects. A dialect is
typically defined by multiple linguistic characteristics, and
we can capture this by combining many solutions to
Eq. (3). In Fig. 6, we superpose the synthetic isoglosses
for 20 binary (V ¼ 2) linguistic variables. We see that there
is a significant degree of bundling where many isoglosses
follow similar routes across the system. Given that the
initial conditions for each variable are distinct random
frequency distributions (Fig. 2), these bundles represent
highly probable isogloss positions: many different early
spatial distributions lead to these at later stages of evolu-
tion. The key point here is that the final spatial structure of
dialect domains is rather insensitive to the early history of
the language: the effects of surface tension and population
density draw many different isoglosses toward the same
stable configurations. In this sense the surface tension
effect is an “invisible hand” which, in the long term, can
overpower historical population upheavals. However, we
emphasize that our model predicts only the spatial structure
of dialects and not their particular sound; this is very much
determined by quirks of history and the initial state of the
system. Figure 6 also illustrates the effect of human
mobility on dialect structure. For a smaller interaction
range (5 km), the structure of synthetic isogloss bundles is
more complex, producing a larger number of distinct

FIG. 4. Behavior of an isogloss surrounding a densely popu-
lated area. The blue dot represents a speaker on the isogloss
between variants A and B. Other speakers are shown as black
dots. The circle around our speaker represents their typical range
of interaction. Within red shaded part of this interaction range,
variant A is more common, and in the yellow shaded part, variant
B is more common. Because of variation in population density,
they hear more of variant B (dashed lines indicate interactions)
despite the fact that a greater area (red shaded) of their interaction
range lies within the domain of variant A.

FIG. 5. Behavior of isoglosses at an indentation in coastline or
other boundary (political or naturally occurring). Dashed isogloss
is unstable and will evolve toward the solid isogloss which
emerges perpendicular from the coast. We assume that both
isoglosses are effectively anchored to a feature some distance
away, opposite the boundary shown. Speakers are shown as blue
dots, and colors have the same meanings as in Fig. 3.
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regions. This effect is well documented in studies of the
historical evolution of dialects which were, in the past,
more numerous and covered smaller geographical areas [4].
Within our model, this is explained by the fact that
fluctuations in population density become relevant to
isogloss evolution only when they take place over a length
scale that is comparable to the interaction range: Two
human settlements could develop distinct dialects only if
they were separated by a distance significantly greater than
σ, otherwise they would be in regular linguistic contact.

2. Cluster analysis

Having analyzed our model using isoglosses, we now
make comparison to recent work in dialectometry, where
dialect domains have been determined using cluster
analysis and by multidimensional scaling [68]. A typical
clustering approach [10,12] is to construct a data set giving
the frequencies of a wide range of variant pronunciations at
different locations, and then to cluster these locations
according to the similarity of their aggregated sets of
characteristics. Resampling techniques such as bootstrap
[69] may be used to generate “fictitious” data sets and
improve stability. We mimic this approach by constructing
a synthetic data set from 20 solutions of Eq. (3) with V ¼ 2,
and each with different random initial conditions, corre-
sponding to different linguistic variables. We then ran-
domly select a large number (6000) of sample locations
within GB and determine the modal variants for each of the
20 variables at each location. This sample size is chosen to
be sufficiently large so that the effect of resampling is only
to make short length scale (≪1 km) changes to cluster

boundaries. These aggregated data are then divided into k
clusters using the k-medoids algorithm [70] (available in
the R language). The metric used for linguistic distance
between sample points is the Manhattan distance between
the binary vectors, where the two variants are labeled 1 or
−1. Because we are comparing vectors which can be
transformed into one another purely by substitutions
(1 for −1 or vice versa), rather than insertions or deletions,
this is equivalent to the Levenshtein distance used in
dialectometry [2,9]. We find that almost identical results
are obtained by applying Ward’s hierarchical clustering
algorithm [71] to the sample locations and subsequently
cutting the tree into k clusters.
In order to compare our cluster analysis to the work of

dialectologists, we consider a prediction for the future
dialect areas of England (excluding Wales and Scotland)
made by Trudgill [4], shown in the left-hand map of Figs. 7
and 8. This prediction divides the country into 13 regions,
and is the result of a systematic analysis of regional
variation in speech and ongoing changes. Such sharp

FIG. 6. Superposition of the isoglosses at t ¼ 50 produced by
20 solutions of the V ¼ 2model with β ¼ 1.1, each with different
randomized initial conditions. For the left-hand map, σ ¼ 5 km,
and for the right-hand map, σ ¼ 10 km (see video in Supple-
mental Material [38]). Background shading indicates population
density with brightest orange corresponding to 7200 inhabitants
per km2.

FIG. 7. Left map: Future England dialect boundaries predicted
by Trudgill [4]. Right map: Future dialect boundaries predicted
using k-medoids cluster analysis of 20 synthetic binary linguistic
variables when σ ¼ 10 km and β ¼ 1.1 at t ¼ 150. Levenshtein
distance (or “edit distance”) [9] used as distance metric. Colors,
determined by Hungarian method, show mapping between
dialect areas. Black dotted line shows north-south isogloss.

FIG. 8. Left map: Future England dialect boundaries predicted
by Trudgill [4]. Right map: Voronoi tessellation with the same
number of cells as Trudgill’s prediction. Colors determined by
Hungarian algorithm.
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divisions are a significant simplification of reality, however,
and hide many subtle smaller-scale variations. The decision
to define 13 regions therefore reflects a judgment on the
range of language use which can be categorized as a single
dialect. To allow comparison with this prediction, we
perform a set of cluster analyses of near-equilibrium
(large t) solutions for the whole of GB, for a range of
values of the number k of clusters (see Fig. 9), with the
aim of producing 13 within the subset of GB defined by
England. The closest result is 14 clusters for 20 ≤ k ≤ 24,
with almost identical results within England for each of
these choices. Having defined our synthetic dialect regions,
we apply the Hungarian method [72] to find the mapping
between our synthetic dialects and Trudgill’s predicted
dialects, which maximizes the total area of overlap between
the two. The results are shown in Fig. 7. To provide a
measure of the effectiveness of our model in matching
Trudgill’s predictions, we also define a null model, which
divides the country into regions at random, independent of
population distribution and without reference to any model
of speaker interaction. There are a number of models that
generate random tessellations of space [73], many of which
are motivated by physical processes such as fracture or
crack propagation. We exclude such physical assumption
and thus opt for the Voronoi tessellation [73], based on the
Poisson point process: the simplest of all random spatial
processes. Our null model is then a Voronoi tessellation of
England (Fig. 8) using 13 points selected uniformly at
random from within its borders, with dialects labeled to
most closely match Trudgill’s map, using the Hungarian
method.
Having generated our synthetic dialect maps, we now

quantify the extent to which they match the predictions of
Trudgill. The null model, because of its lack of modeling
assumptions, will reveal the extent to which our model is
“better than random” at matching these predictions. We
offer four alternative metrics of similarity in Table I. The
simplest metric is overlap (OL): the percentage of land area
which is identified as belonging to the same dialect as

Trudgill’s prediction. The weighted overlap (WOL)
weights overlapping regions in proportion to their popu-
lation density: it gives the probability that a randomly
selected inhabitant will be assigned to the same dialect zone
by both maps. From Table I we see that this probability is
high (82%) for our model, but lower for the random
Voronoi model. We suggest that this is a result of the fact
that population centers tend to repel isoglosses and,
therefore, often lie at the centers of dialect domains. We
examine this repulsion effect in more detail below. The
final two metrics are commonly used to compare cluster-
ings. Consider a set S of elements (spatial locations for us)
that has been partitioned into clusters (dialect areas) in two
different ways. Let us call these two partitions X and Y. The
Rand index (RI) [74] is defined as the probability that,
given two randomly selected elements of S, the partitions X
and Y will agree in their answer to the question: are both
elements in the same cluster? A disadvantage with using
this index to compare dialect maps is that the larger the
number of regions in the maps, the more likely it is that two
randomly selected spatial points will not lie in the same
cluster in either map. The index therefore approaches 1 as
the number of dialect areas grows. This problem may be
countered by taking account of its expected value if X and
Y were picked at random, subject to having the same
number of clusters and cluster sizes as the originals [75].
The “adjusted Rand index” (ARI) is then defined as

ARI ≔
RI − expected index
1 − expected index

: ð5Þ

The ARI ∈ ½−1; 1� measures the extent to which a cluster-
ing is a better match than random to some reference
clustering and is used by dialectometrists [76] in preference
to the original Rand index. For us, the reference clustering
is Trudgill’s predicted dialect map, and the Rand and
adjusted Rand indices in Table I measure similarity to this
reference.
The primary conclusion that may be drawn from the

indices in Table I is that by all measures our model provides

FIG. 9. Results of k-medoids cluster analysis of 20 synthetic
binary linguistic variables when σ ¼ 10 km and β ¼ 1.1 at
t ¼ 150. Edit distance [9] used as distance metric. k values from
left to right are k ¼ 16, 22, 30.

TABLE I. Metrics measuring the similarity between Trudgill’s
predictions [4] for future English dialects and the predictions of
our model. Metric acronyms are OL (overlap), WOL (weighted
overlap), RI (Rand index), and ARI (adjusted Rand index). The
Voronoi example column gives equivalent metrics for the
example Voronoi tessellation in Fig. 8, and the Voronoi set
column gives the mean metrics, with standard deviation, for five
randomly generated Vornoi tessellations.

Metric Model Voronoi example Voronoi set

OL 68% 41% 45� 3%
WOL 82% 36% 49� 11%
RI 0.91 0.84 0.83� 0.01
ARI 0.63 0.29 0.30� 0.01
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a better match than the null model (indices all differ by at
least 3 standard deviations, and typically many more). Of
particular interest is the weighted overlap probability
(WOL ¼ 82%). Isoglosses are typically repelled by pop-
ulation centers, so tend to pass through regions of relatively
low density. Because of this the WOL may be viewed as a
measure of the effectiveness of the model at determining
the centers of dialect regions and is less sensitive to small
errors in isogloss construction, explaining its high value. It
is important to realize also that Trudgill’s predictions may
themselves be imperfect.
We now make some qualitative comments. The dotted

line in Fig. 7 shows the location of our model’s most dense
north-south isogloss bundle. This is coincident with what is
described by Trudgill as “one of the most important
isoglosses in England” [14] dividing those who have [℧]
in butter from those who do not. In our model, the fact that
this border lies where it does is a result of the surface
tension effect which attracts many isoglosses towards the
two coastal indentations at either end (see video in
Supplemental Material [38]). The fact that many random-
ized initial boundary shapes evolve toward this configura-
tion, and that the configuration is seen as important by
dialectologists, supports the hypothesis that surface tension
is an important driver of spatial language evolution. We
also note that the western extremities of GB (Cornwall and
northwest Scotland) support multiple synthetic dialects in
our model, and we suggest that this is due to a heavily
indented coastline and the fact that high aspect-ratio
tongues of land are likely to be crossed by isoglosses; a
fact predictable by analogy with continuum percolation
[21]. The southwest peninsula has historically supported
three dialects.
In future work, the model might be tested by comparing

its predictions to well-researched dialect areas. On example
is Netherlands. Here, dialectologists have performed a
cluster analysis [68] based on Levenshtein distances
between field observations of 360 dialect varieties (corre-
sponding to 357 geographical locations), revealing 13
significant geographical groupings. The extent to which
a model is consistent with these groupings, accounting for
variability caused by finite sample size, could be tested by
generating equivalent clusterings for multiple fictitious
dialect samples of the same size.

B. Bundles, fans, stripes, and circular waves

We now illustrate a number of well-known features of
dialect distributions which may be qualitatively reproduced
by our model. We consider first the isogloss bundle
reported by Bloomfield [3] separating “High German”
from “Low German.” The bundle emerged from the tip
of an indentation of the Dutch-German speech area
(bordered to the east by Slavic languages) and ran roughly
east-west before separating approximately 40 km east of
the river Rhine, and fanning out around cities such as

Dusseldorf, Cologne, Koblenz, and Trier. This arrangement
of isoglosses is known as the “Rhenish fan.” In Fig. 10, we
construct an artificial system with boundaries approximat-
ing the geographical structure of relevant parts of the
Dutch-German language area illustrated in Bloomfield
[3] containing an artificial cluster of population centers
representing the German cities located near the Rhine. The
system was initialized using the same randomization
procedure used for GB, and Fig. 10 shows a superposition
of ten solutions, each with different initial conditions. In the
early stages of evolution, very little pattern is discernible,
but as time progresses, the main indentation collects
isoglosses, while the cities repel them, producing a fanlike
structure. We therefore suggest that the isogloss separation
which created the Rhenish fan may have been the result of
repulsion by the cities of the Rhine.
We next consider an example of what some physicists

refer to as “stripe states” [21]: in finite systems that
experience phase ordering, and have aspect ratios greater
than 1, boundaries between two orderings often form across
the system by the shortest route (in a rectangle, joining two
long sides). A collection of such boundaries forms a striped
pattern of phase orderings. Figure 11 illustrates this effect,
produced by Eq. (3). Our model therefore predicts such
striped dialect patterns in long thin countries, and a
particularly striking example of the effect may be seen
in the dialects of the Saami language [77]. The Saami
people are indigenous to the Sámpi region (Lapland),
which includes parts of Norway, Sweden, and Finland.
Their Arctic homeland forms a curved strip with a length
which is approximately 5 times its average width. The
region is divided into ten language areas, and the bounda-
ries of all but two of these take a near-direct route between
the two long boundaries of the system, forming a distinctive
striped pattern. Another example is the dialects of Japan,

FIG. 10. Evolution of isoglosses in a 400 × 200 system with two
opposing boundary indentations and unit background population
density, together with a collection of cities contributing additional
population densities ρðrÞ ¼ ðρ1 − 1Þ exp f−r2=ð2R2Þg, where r is
distance from city center, R ¼ 10, and ρ1 ¼ 4 (measuring ratio of
peak city density to background). Parameter values σ ¼ 4, β ¼ 2.
Evolution times t ¼ 10, 50, 300, 1660. See video in Supplemental
Material for full animation [38].
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whose boundaries in many cases cross the country
perpendicular to its spine [78].
The relationship between geographical separation and

linguistic distance (often measured using Levenshtein dis-
tances [2]) is typically sublinear [2,39]. The definition of
linguistic distance and its relation to geographic distance
was made by Séguy [5,6], and the relationship therefore
goes by the name Séguy’s curve [39]. It has been
substantially refined and tested since [2,39,79], and also
generalized to involve travel time [80]. Séguy’s curve is not
universal, however. For example, an analysis of Tuscan
dialect data [81] reveals an unusually low correlation
between phonetic and geographical distances. A more
detailed analysis reveals that there are geographically
remote areas which are linguistically similar, and that
within an approximately circular region (radius ≈40 km)
around the main city, Florence, phonetic variation corre-
lates more strongly with geographical proximity. It is
hypothesized [81] that this pattern marks the radial spread
of a linguistic innovation (called “Tuscan-gorgia”). These
Tuscan data motivate our final example of the qualitative
behavior of our model. To illustrate how a linguistic
variable can spread outwards from a population center,
purely through the effects of population distribution and not
necessarily driven by prestige or other forms of bias, we
simulate our model using an artificial city with Gaussian
population distribution (Fig. 12). The system is initialized
with a circular isogloss, centered on the city, representing a
local linguistic innovation. Because population density is a
decreasing function of the distance from the city center,
speakers on the isogloss hear more of the innovation than
their current speech form, allowing it to expand (as
explained in Fig, 4). We see in Sec. VII that this expansion
will not not necessarily continue indefinitely. Expansion
processes such as this have also been observed in Norway
[14]. In that case, the progress of new linguistic forms was
shown to depend on age, with changes more advanced for

younger speakers, who are more susceptible to new forms
of speech. We illustrate how this effect can be analyzed in
Appendix B.

V. SÉGUY’S CURVE

We now determine the relationship between geographi-
cal and linguistic distance within our model, providing an
analytical prediction for the form of Séguy’s curve [5,6,39].
For simplicity, we consider the two variant model V ¼ 2
and suppose that our language contains a number n of
linguistic variables. At each location in space the local
dialect is an n-dimensional vector of the local modal
variants which we label 1 and −1. Letting ϕðr; tÞ, where
r ¼ ðx; yÞ, be the vector field giving the distribution of
these variants, the number of differences (the Levenshtein
distance [9]) between two dialects ϕðr1; tÞ ≕ ϕð1Þ and
ϕðr2; tÞ ≕ ϕð2Þ is ½n − ϕð1Þ · ϕð2Þ�=2. The linguistic dis-
tance Lð1; 2Þ between two dialects may be defined [82] as
the fraction of variables that differ between them:

Lð1; 2Þ ≔ 1

2

�
1 −

ϕð1Þ · ϕð2Þ
n

�
: ð6Þ

Since we assume that each variant evolves independently of
every other, the expected linguistic distance is

lð1; 2Þ ≔ E½Lð1; 2Þ� ¼ 1

2
ð1 −E½ϕið1Þϕið2Þ�Þ; ð7Þ

where ϕi is the ith component of ϕ. To compute
E½ϕið1Þϕið2Þ�, we make use of the close similarity between

FIG. 11. Evolution of isoglosses in a 400 × 200 rectangular
system with uniform population density, starting from random-
ized initial conditions. We show a superposition of 10 such
solutions. Notice that all isoglosses join the two long sides of the
system. Parameter values σ ¼ 4, β ¼ 2. Evolution times t ¼ 30,
90, 270, 810.

FIG. 12. Evolution of a circular isogloss (initial radius 30) in a
200 × 200 system with unit background population density,
together with a central city contributing additional density
ρðrÞ ¼ ðρ1 − 1Þ exp f−r2=ð2R2Þg, where r is distance from city
center, R ¼ 40, and ρ1 ¼ 21. Parameter values σ ¼ 4, β ¼ 2.
Evolution times t ∈ f10; 20; 30;…; 300g.
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Eq. (3) and the time-dependent Ginzburg-Landau equation
[20] to derive (see Appendix C) an analogue of the Allen-
Cahn equation [83] giving the velocity of an isogloss at a
point in terms of the unit vector ĝ normal to it at that point:

v ¼ −βσ2
�∇ · ĝ

2
þ∇ρ · ĝ

ρ

�
ð8Þ

¼ −βσ2
�
κ

2
þ∇ρ · ĝ

ρ

�
: ð9Þ

The quantity κ is the curvature of the isogloss at the point:
in the absence of variations of population density, the
isogloss moves so as to reduce curvature. The second term
in the square brackets produces a net migration of iso-
glosses towards regions of lower population density. To
compute correlation functions between the field ϕi at
different locations in space, we apply the Ohta-Jasnow-
Kawasaki (OJK) method [84], introducing smoothly vary-
ing auxiliary field mðx; y; tÞ, which gives the value of the
ith variant as ϕi ¼ sgnðmÞ. Note that the auxiliary field
mðx; y; tÞ is distinct from the memory miðx; y; tÞ for
the ith variant. The OJK equation, describing the time
evolution of this field, adapted to include density effects, is
(Appendix C)

∂m
∂t ¼ βσ2

�∇2m
4

þ∇ρ:∇m
ρ

�
: ð10Þ

We introduce the fundamental solution, Gðr; t; r0Þ (the
Green’s function) of Eq. (10), giving the function mðr; tÞ
subject to the initial condition mðr; 0Þ ¼ δðr − r0Þ. The
solution for arbitrary initial conditions is then

mðr; tÞ ¼
Z
R2

dr0Gðr; t; r0Þmðr0; 0Þ: ð11Þ

We assume that the initial condition of our system
consists of spatially uncorrelated language use, so that
E½ϕiðr1; 0Þϕiðr2; 0Þ� ¼ δr1r2 . A convenient, equivalent
condition on the auxiliary field is to let it be Gaussian
(normally) distributed mðr; 0Þ ∼N ð0; 1Þ with correlator

E½mðr1; 0Þmðr2; 0Þ� ¼ δðr1 − r2Þ: ð12Þ
We can compute this correlator at later times using the
fundamental solution G:

E½mðr1; tÞmðr2; tÞ�

¼
Z
R4

Gðr1; t; r10ÞGðr2; t;r20ÞE½mðr10;0Þmðr20;0Þ�dr10dr20

¼
Z
R2

Gðr1; t; r0ÞGðr2; t; r0Þdr0: ð13Þ

The linearity of our adapted OJK equation (10) ensures that
mðr; tÞ remains Gaussian for all time [20] (to see this, note

that derivatives are limits of sums, and sums of Gaussian
random variables are themselves Gaussian). However, the
values of the field at different spatial locations develop
correlations so that the joint distribution of any pair is
bivariate normal. Following Bray [20], we define the
normalized correlator

γðr1; r2Þ ≔
E½mðr1; tÞmðr2; tÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½mðr1; tÞ2�E½mðr2; tÞ2�
p : ð14Þ

Using the abbreviated notation γðr1; r2Þ≡ γð1; 2Þ, the
correlator for the original field may be found by averaging
over the bivariate normal distribution of mðr1; tÞ ≕ mð1Þ
and mðr2; tÞ ≕ mð2Þ (see, e.g., Ref. [85]):

E½ϕið1Þϕið2Þ�ðtÞ ¼ E½sgn½mð1Þ�sgn½mð2Þ�� ð15Þ

¼ 2

π
sin−1ðγð1; 2ÞÞ: ð16Þ

We now compute this correlator and derive a theoretical
prediction for Séguy’s curve.

A. Uniform population density

If population density is constant ρ ¼ C, then our adapted
OJK equation (10) reduces to OJK’s original form, which
has the fundamental solution

Gðr; t; r0Þ ¼
expf− jr−r0j2

βσ2t g
πβσ2t

; ð17Þ

giving a normalized correlator

γð1; 2Þ ¼ exp

�
−

r2

2tβσ2

�
≕ γtðrÞ: ð18Þ

Our prediction for Séguy’s curve at time t is therefore

lðr; tÞ ¼ 1

2

�
1 −

2

π
sin−1ðγtðrÞÞ

�
: ð19Þ

This curve is plotted in Fig. 13 along with simulation
results. We give the following interpretation of the curve.
Starting from a randomized spatial distribution of language
use, the need for conformity generates localized regions
where particular linguistic variables are in common use,
and these regions are bounded by isoglosses. These regions
expand, driven by surface tension in isoglosses, so that
from any given geographical point one would need to travel
farther in order to find a change in language use. The
linguistic distance between two points therefore tends to
decrease with time, and the curve [Eq. (19)] gives the rate of
decrease as exponential. There are features of reality which
we might expect to alter this behavior. First, we assume that
no major population mixing or migration takes place—such
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events would have the effect of resetting the initial con-
ditions of the model. Our prediction is valid only during
times of stability. Second, we assume that the population is
uniformly distributed in the system when in reality pop-
ulations are clumped and, as we have seen, population
centers can support their own dialects if they are large
enough. We take some steps toward addressing this issue
below. In Appendix D, we briefly discuss a simple one-
dimensional simulation model from the dialectology liter-
ature [39], which includes the same large r behavior as in
Eq. (19) for a particular choice (quadratic) of macroscopic
“influence” curve.

B. Peaked population density

We now consider how Séguy’s curve is modified by the
presence of a peak in population density. In order to allow
analytical tractability, we consider a simple exponentially
decaying peak

ρðx; yÞ ¼ exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
R

�
; ð20Þ

where R > 1. To understand the behavior of the modified
OJK equation (10), it is useful to decompose it into an
advection diffusion equation plus a source term:

∂m
∂t ¼ βσ2

�
∇ ·

�∇m
4

þ∇ρ

ρ
m

�
−
�
∇ ·

∇ρ
ρ

�
m

�
: ð21Þ

Defining r ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, the average velocity field for the

diffusing particle is

−
∇ρ
ρ

¼ ðx; yÞ
rR

: ð22Þ

The source term is

−
�
∇ ·

∇ρ
ρ

�
m ¼ m

rR
: ð23Þ

We now view Eq. (21) as describing the mass distribution
for a collection of Brownian particles which are being
driven radially away from the origin. The source term is
interpreted as a field that causes particles to produce
offspring at rate ðrRÞ−1 as they move through it. The
fundamental solution, Gðr; t; r0Þ, to Eq. (21) is then the
mass distribution for a very large (approaching infinite)
collection of particles with total mass initially equal to one,
all of which started at r0.
We wish to compute the dependence of linguistic

distance on geographical distance from the peak of the
population density (thought of as the center of a city). We
therefore require the expectation

E½mð0; tÞmðr; tÞ� ¼
Z
R2

Gð0; t; r0ÞGðr; t; r0Þdr0: ð24Þ

Computation of a general closed-form expression for
Gðr; t; r0Þ is not our aim; preliminary computations in
this direction suggest that if such a form existed, its
complexity would restrict its use to numerical computations
alone. Instead, we make arguments leading to a simple
approximation for Séguy’s curve. We observe first that the
integrand in Eq. (24) is dominated by the region around
r0 ¼ 0. Numerical evidence for this is provided in Fig. 14,
where we see that the fundamental solution grows in
magnitude as r0 → 0. In general, the solution consists of
a circular plateau propagating outward from the origin plus
an isolated but spreading peak also drifting away from the
origin (Fig. 14). The plateau is formed once the rate of loss
of particles from the peak source region (jr0j≲ R−1) though

FIG. 13. Séguy’s curve showing linguistic distance (l) versus
geographical distance (r). Dashed line shows Eq. (19) in the case
σ ¼ 4, β ¼ 2. Open and closed dots show simulated linguistic
distances using same parameter values in a 1000 × 1000 system
at times t ¼ 80, 160. Note that linguistic distance depends only
on the combination rt−1=2, so curves evaluated at different times
collapse onto one another.

FIG. 14. Radial cross sections (along the line y ¼ 0) through
numerical approximations to fundamental solutions of the
modified OJK equation (21) with population distribution
Eq. (20) at time t ¼ 300. Here, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ x. Parameter

values are βσ2 ¼ 1 and R ¼ 10. Initial conditions are r0 ¼ ð1; 0Þ;
ð10; 0Þ; ð20; 0Þ (solid, dashed, dotted lines, respectively).
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advection and diffusion is equal to the rate of creation of
new particles. The plateau height is determined by the
particle mass which reaches the peak source region in the
early stages of evolution. Because of radial drift, the only
particles with a chance of doing this are those with
sufficiently small Péclet number [86]:

Pe ¼ 4jr0j
R

; ð25Þ

where r0 is their starting point (or that of their earliest
ancestor if they are daughters). Values of r0 that lie outside
a region of radius ∝ R (henceforth Péclet region) around
the origin can therefore be ignored when computing
Gð0; t; r0Þ. For R ≫ 1, the peak region forms a small
fraction OðR−4Þ of the Péclet region, and particles within
the Péclet region have a probability of reaching the peak
which decays exponentially with their initial distance from
it. The function Gð0; t; r0Þ will therefore itself be sharply
peaked within the Péclet region, around r0 ¼ 0, and we
make the approximation Gð0; t; r0Þ ≈ hδðr0Þ, where h is
plateau height. Making use of this approximation in
Eq. (24), we have

E½mð0; tÞmðr; tÞ� ≈ hGðr; t; 0Þ: ð26Þ

To compute the variance

E½m2ðr; tÞ� ¼
Z
R2

G2ðr; t; r0Þdr0; ð27Þ

we note that if jrj ≪ t=R, then the dominant contribution to
the integral comes from the plateau component of the
solution. If jrj ≫ t=R, then the plateau will not have
reached r, so only the spreading peak component of the
fundamental solution will contribute. Therefore,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½m2ðr; tÞ�

q
≈
�
Oð1Þ if jrj ≪ t=R

Oðt−1=2Þ if jrj ≫ t=R:
ð28Þ

We comment on the significance of this behavior below. To
find the form of Gðr; t; 0Þ, we note first its circular
symmetry, which reduces the number of variables in the
OJK equation to two:

∂m
∂t ¼ σ2β

4

�∂2m
∂r2 þ

�
1

r
−
4

R

� ∂m
∂r

�
: ð29Þ

We seek a traveling wave solution, subject to the initial
condition mðr; 0Þ ¼ δðrÞ, representing the expanding pla-
teau, valid for large r, so that the 1=r term in Eq. (29) can be
neglected. We obtain, as t → ∞,

Gðr; t; 0Þ ∼ A erfc

�
Rr − βσ2ðt − t0Þ
Rσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βðt − t0Þ

p �
; ð30Þ

where t0 is a time correction which accounts for the fact that
the propagation velocity of the plateau takes some time to
settle down to its long time value of βσ2=R. We verify in
Fig. 15 that this is the correct asymptotic solution by
comparing it to the numerical solution of Eq. (29) for
large t. We now approximate the normalized correlator as

γðr; tÞ ≈ Gðr; t; 0Þ
Gð0; t; 0Þ : ð31Þ

This approximation neglects the drop in the variance of
mðr; tÞ for r ≫ t=R described by Eq. (28), which amounts
to neglecting a multiplicative factor

ffiffi
t

p
in the large r

behavior of the correlator. Our approximate analytical
prediction for Séguy’s curve measured radially from the
center of the exponentially decaying population distribu-
tion is therefore

lcðr; tÞ ≔
1

2

�
1 −

2

π
sin−1

�
Gðr; t; 0Þ
Gð0; t; 0Þ

��
: ð32Þ

This prediction is compared to correlations in the full
model (Fig. 16 and Fig. 17) by generating 100 realiza-
tions of isogloss evolution over the exponential popula-
tion density, each with different randomized initial
conditions. From Fig. 16 we see that as time progresses
a growing region emerges around the center of the city in
which the linguistic distance to the center is close to zero.
An alternative visualization of this effect is given in
Fig. 18, which shows a superposition of the isoglosses
from 20 simulation runs. As time progresses, a circular
patch emerges in the center of the system, which is
devoid of isoglosses, and therefore where all speakers use
the same linguistic variables. Outside of this central “city

FIG. 15. Continuous line line shows radial cross section (along
the line y ¼ 0) through numerical solution of the modified
OJK equation (21) with population distribution Eq. (20)
at time t ¼ 700, with initial condition r0 ¼ ð0; 0Þ. Here,
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ x. Parameter values are βσ2 ¼ 1 and R ¼ 10.

Data points show asymptotic analytical solution Gðjrj; t; 0Þ
[Eq. (30)], with t ¼ 700, time offset t0 ¼ −4.4, and A ¼
0.0109 (found by maximum likelihood).
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dialect,” we note that the asymptotic behavior of the
complementary error function,

erfcðxÞ ∼ expf−x2g
x

as x → ∞ ð33Þ

together with the expansion sin−1ðϵÞ ¼ ϵþOðϵ3Þ lead
to the prediction that linguistic correlations fall as
e−cðΔrÞ2=ðΔrÞ, where c is a constant and Δr is the
distance from the edge of the city dialect. This is a
faster rate of decay than in the flat population density
case. It appears from Fig. 16 that in reality the decay rate
may be even faster than this. Further simulations reveal
that the velocity with which the city dialect expands
shows some systematic deviation from the prediction v ≈
βσ2=R of our OJK analysis. For example, in Fig. 17 we
reduce the conformity parameter to β ¼ 1.1 and we see
that our theoretical predictions are in close agreement
with the simulation data, provided we accelerate time by
a factor of ≈1.25. The value of β ¼ 1.4 selected in
Fig. 13 produces a match between predicted and
observed velocity, but for larger values of β the pre-
diction is an overestimate. For example, when β ¼ 1.5
with all other parameters identical, the simulated velocity
in the full model is smaller than our prediction by a
factor of 0.97. One possible explanation for this discrep-
ancy is that the interface shape may affect the constant of
proportionality in the Allen-Cahn equation (9), for
example, if it did not match its constant density equi-
librium form. We also note that OJK’s assumption of
isotropy in unit normals to isoglosses, although preserved
globally by the circular symmetry of our system, is lost
locally at the edge of the city dialect. Despite these
shortcomings, the adapted OJK theory allows analytical

insight into the formation of dialects in population
centers and the behavior of Séguy’s curve around cities.
We leave the development of a more sophisticated theory
for future work.

FIG. 16. Dashed lines show theoretical shape of Séguy’s curve
Eq. (32) centered at peak of population density ρ ¼ e−r=R with
R ¼ 20. Curve computed using Eq. (32) when β ¼ 1.4, σ ¼ 5,
times are t ¼ 10, 20, 30 with offset t0 ¼ −5.77 (maximum
likelihood estimate). Simulation points give equivalent correla-
tions in the full model computed from 100 independent simu-
lations in a 400 × 400 system.

FIG. 17. Dashed lines show theoretical shape of Séguy’s curve
centered at peak of population density ρ ¼ e−r=R with R ¼ 20,
and with time evolution accelerated by factor of 1.25. Curve
computed using Eq. (32) when β ¼ 1.1, σ ¼ 5, and times are
t0 þ 1.25t, where t ¼ 10, 20, 30 and t0 ¼ 4.43. Linear scaling of
time determined by maximum likelihood fit of simulation to
analytical prediction. Simulation points give equivalent correla-
tions in the full model computed from 100 independent simu-
lations in a 400 × 400 system at times t ¼ 10, 20, 30.

FIG. 18. Isogloss evolution in a 400 × 400 system with V ¼ 2,
β ¼ 1.1, σ ¼ 5 at t ¼ 10, 15, 25, 35 with ρ ¼ e−r=R, where
R ¼ 20 and r ¼ 0 corresponds to the center of the system. Plot is
a superposition of 20 simulations with different initial conditions.
Central peak repels isoglosses. See video in Supplemental
Material for full animation [38].

SPATIAL EVOLUTION OF HUMAN DIALECTS PHYS. REV. X 7, 031008 (2017)

031008-15



VI. DIALECT AREAS AND DIALECT CONTINUA

There is debate amongst dialectologists as to the most
appropriate way to view the geographical variation of
language use [1,2]. The debate arises because it is rarely
the case that dialects are perfectly divided into areas.
Chambers and Trudgill [1] imagine the following example:
we travel from village to village in a particular direction and
notice linguistic differences (large or small) as we go.
These differences accumulate so that eventually the local
population are using a very different dialect from that of the
village we set out from. Did we cross a border dividing the
dialect area of the first village from that of the second, and
if so, when? Alternatively, is it a mistake to think of dialects
as organized into distinct areas; should we only think of a
continuum?
We now set out what our model can tell us about these

questions. In one sense, language use in our model is
always continuous in space. Although domains emerge
where one variable is dominant, domain boundaries form
transition regions in which the variants change continu-
ously (the width of these regions is computed in Sec. VII).
Despite this, the boundary between two sufficiently large
single-variant domains will appear narrow compared to the
size of the domains, and in this sense the domains are well
defined and noticeable by a traveler interested in one
linguistic variable. Of more interest are the observations
of a traveler who pays attention to the full range of
language use. To perceive a dialect boundary, this traveler
must see a major change in language use over a short
distance. This change must be large in comparison to other,
smaller changes perceived earlier. In our model a major
language change is created by crossing a large number of
isoglosses over a short distance. The question then is, under
what circumstances will isoglosses bundle sufficiently
strongly for dialect boundaries to be noticeable?
To answer this we need to recall the three effects which

drive isogloss motion. First, surface tension, which tends to
reduce curvature. Second, migration of isoglosses until they
emerge perpendicular to a boundary such as the coast, the
border of a linguistic region, a sparsely populated zone, or
an estuary. Third, repulsion of isoglosses from densely
populated areas. There are two major ways in which these
effects can induce bundling, both of which require the
essential ingredient of time and demographic stability
in order for surface tension to take hold. Indented bounda-
ries can collect multiple isoglosses, creating a bundle.
Examples already noted include the Wash and the Severn in
GB, the Gironde Estuary in France, and the historical
indentation in the Dutch-German language area marking
the eastern end of the Rhenish fan. A major boundary
indentation may not always create a bundle, however: it
may be that other parts of the boundary, or the presence of
cities, creates a fanning effect. Variations in population
density can also create bundling. Dense population centers
which are large in comparison to the typical interaction

range will push out linguistic change, and where two
centers both repel, we expect to see bundling where their
zones of influence meet. Each city would then create its
own well-defined dialect area. Within real cities we also see
subdialects spoken by particular social groups [55], but
since our model does not account for social affiliations, we
cannot explicitly model this.
In Fig. 19, we schematically illustrate examples of these

effects using three imaginary “island nations.” Nation A
exhibits distinct dialect areas. The northernmost area is
supported both by a city, which may generate and then
repel language features, and by two indentations which
form a “pinch point” which will tend to collect isoglosses
via the boundary effect. Several other pinches exist which
also collect isoglosses, creating distinct dialects. The
southernmost city supports an isogloss via repulsion, which
would otherwise migrate south under the combined influ-
ence of surface tension and the boundary effect, eventually
disappearing. Nation B also possesses boundary indenta-
tions, but the lack of pinch points reduces bundling: while
the indentations collect isoglosses, the smoother parts of
the coastline allow isoglosses to attach anywhere, creating a
continuum of language use. Two city dialects do exist,
however, driven by repulsion. Finally, nation C is a convex
region. This is an example of a system which, without a

A
B

C

FIG. 19. Schematic diagram of isoglosses (dashed lines) for
three language areas or “island nations.” Yellow and ochre circles
represent cities. Nation A supports dialect areas formed by coastal
boundary shape and repulsion from cities. Nation B largely
exhibits a continuum of variation apart from two somewhat
indistinct city dialects. Nation C has a single city dialect, but
without this city (or if the city were not sufficiently densely
populated) it would have no linguistic variation due to its entirely
convex boundary and evenly distributed population.
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city, could not support more than one dialect, and would
tend over time to lose isoglosses.
In some regions there are no dialect areas, only a

continuum of variation [87], and in others clear dialects
exist [4]. The above examples point to some general
principles. In regions with low population density, a lack
of major boundary indentations, and few large cities, we
might expect isoglosses to position themselves in a less
predictable way, creating language variation which would
be perceived as a continuum by a traveler. The regular
creation of new isoglosses (resetting the initial conditions
of the model) through linguistic innovation or demographic
instability could also disrupt the ordering processes.
Narrow geographical regions, or where there are major
boundary indentations, or dense population centers which
push out linguistic change, are particularly susceptible to
the formation of distinct dialects.

VII. TRANSITION REGIONS AND CURVATURE

We now derive analytical results that characterize the
transition regions between variables and the effect of
population density on the curvature of dialect domain
boundaries.
To compute the gradients of transition regions, we

consider a straight isogloss (with constant population
density) in equilibrium between variants 1 and 2, given
by the line x ¼ 0. Because the isogloss is vertical the
frequencies will not depend on y, so we write them f1ðxÞ
and f2ðxÞ and note that f1ðxÞ ¼ 1 − f2ðxÞ, so we need only
consider the behavior of f1ðxÞ. For notational simplicity we
define f ≔ f1, m ≔ m1 and pðmÞ ≔ p1ðmÞ. The isogloss
will form the midpoint of a transition region where the
frequencies change smoothly between one and zero, and
where f01ð0Þ measures the rate of this transition. In
equilibrium, from Eq. (3) we have

σ2

2
∂2
xpðmÞ ¼ m − pðmÞ:

Since f ¼ pðmÞ, we have ðσ2=2Þf00 ¼ p−1ðfÞ − f. Note
that f00 is shorthand for ∂2

xfðxÞ. If non-neutrality (con-
formity) is small, we may replace p−1ðfÞ with its Taylor
series about β ¼ 1, neglecting O½ðβ − 1Þ2� terms:

σ2

2
f00 ¼ ðβ − 1Þfð1 − fÞ ln

�
1 − f
f

�
þO½ðβ − 1Þ2� ð34Þ

≕ −
dV
df

þO½ðβ − 1Þ2�: ð35Þ

Here, we define a “potential” function VðfÞ, allowing
us to identify Eq. (34) as Newton’s second law for the
motion of a particle of mass σ2=2 in a potential VðfÞ,
where x plays the role of time, so that the total energy
E ≔ ðσ2=4Þf0ðxÞ2 þ V(fðxÞ) is independent of x [88].

Since V is defined by an indefinite integral, we can define
Vð1

2
Þ ≔ 0. As x → �∞, we require that f0ðxÞ → 0 and

fðxÞ → 1 or 0, so

E ¼ lim
f→1

VðfÞ ¼ lim
f→0

VðfÞ ¼ 4 ln 2 − 1

24
ðβ − 1Þ:

The magnitude of the frequency gradient at the origin,
where fð0Þ ¼ 1

2
, is, therefore,

jf0ð0Þj ¼
ffiffiffiffiffiffi
4E
σ2

r
≈ 0.545

ffiffiffiffiffiffiffiffiffiffiffi
β − 1

p
σ

: ð36Þ

From this we see that weak non-neutrality and larger
interaction range produce shallower gradients and therefore
wider transition regions. As β approaches one, the tran-
sition region becomes increasingly wide and boundaries
disintegrate, destroying the surface tension effect described
in Fig. 3. Equation (36) is verified numerically for an
“almost straight” isogloss in Fig. 20 (red dashed line).
We now relate the equilibrium shape of isoglosses to

population density. Starting from our modified Allen-Cahn
equation (9) for isogloss velocity, and introducing the local
radius of curvature R ¼ 1=κ, we see that when an isogloss
is in equilibrium (having zero velocity)

R ¼ −
ρ

2∇ρ · ĝ ; ð37Þ

where ĝ is a unit normal to the isogloss. We note a simple
alternative derivation of this result based on the dialect
fraction FDðx; yÞ of a domain D. We define this as the

FIG. 20. Sequence of radial cross sections of the frequency of a
linguistic variable whose initial domain is concentric with a city.
Snapshots taken at times t ¼ 10; 30; 50;… starting from initial
radius r ¼ 55. Model parameters σ ¼ 5, β ¼ 1.1. In this example,
the city has radius Rc ¼ 50 and peak density ρ1 ¼ 3. Vertical line
gives theoretical stable radius R2 ¼ 125.3 computed from
Eq. (41). Unstable radius [Eq. (40)] is R1 ¼ 47.2. Red dashed
line gives the theoretical frequency gradient in transition region
[Eq. (36)].
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fraction of conversations that a speaker at a point ðx; yÞ has
with people whose home neighborhoods lie in D:

FDðx; yÞ ≔
Z
D
kðx; y; u; vÞdudv: ð38Þ

Let P ≔ ðx�; y�Þ be a point on an isogloss with local radius
of curvature R ≫ σ, bounding some region D. An intui-
tively appealing condition for language equilibrium is that
the speaker at P should interact with equal numbers of
speakers from within and without D:

FDðx�; y�Þ ¼
1

2
: ð39Þ

Using the saddle point method [47] to evaluate Eq. (38),
we have

FD ¼ 1

2
−

σffiffiffiffiffiffi
2π

p
�

1

2R
þ∇ρ · ĝ

ρ

�
þO

�
σ2

R2

�
:

Result Eq. (37) then follows from the equilibrium condition
Eq. (39). From this we see that large gradients in population
density can produce equilibrium isoglosses with higher
curvature. To test this against our full evolution equa-
tion (3), consider a circular city with radius Rc having a
Gaussian population distribution set in a unit uniform
background:

ρðx; yÞ ¼ 1þ ðρ1 − 1Þe−ðx2þy2Þ=2R2
c :

The constant ρ1 ≥ 1 gives the relative density of the city
center compared to outlying areas. Consider a circular
isogloss which is concentric with the city, then Eq. (37) has
two solutions:

R1 ¼ Rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
− 2Wp

�
−

e1=4

4ðρ1 − 1Þ
�s
; ð40Þ

R2 ¼ Rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
− 2Wm

�
−

e1=4

4ðρ1 − 1Þ
�s
; ð41Þ

where Wp and Wm are two branches of Lambert’s W
function [89], WðzÞ, which solves z ¼ wew. The two
solutions R1 and R2 are, respectively, decreasing and
increasing functions of ρ1. The stability of these solutions
may be determined by noting that if FD > 1

2
, then D will

expand, and contract if the inequality is reversed. From this
we are able to determine that R2 is stable, whereas R1 is not.
If a dialect domain begins with R < R1, then it will shrink
and disappear under the influence of surface tension, but if
initially R > R1, then the domain will expand or contract
until R ¼ R2. This behavior is illustrated in Fig. 20, where

we see that our law Eq. (37) accurately predicts the stable
radius produced by our evolution equation (3).

VIII. DISCUSSION AND CONCLUSION

A. Summary of results

Departing from the existing approaches of dialectology,
we formulate a theory of how interactions between indi-
vidual speakers control how dialect regions evolve. Much
of what we demonstrate is a consequence of the similarity
between dialect formation and the physical phenomenon of
phase ordering. Humans tend to set down roots, and to
conform to local speech patterns. These local patterns may
be viewed as analogous to local crystal orderings in binary
alloys [83] or magnetic domains [22]. As with phase
ordering, surface tension is a dominant process controlling
the evolution of dialect regions. However, important
differences arise from the fact that human populations
are not evenly distributed through space, and the geo-
graphical regions in which they live have irregular shapes.
These two effects cause many different randomized early
linguistic conditions to evolve toward a much smaller
number of stable final states. For Great Britain we show
that an ensemble of these final states can produce predicted
dialect areas which are in remarkable agreement with the
work of dialectologists.
Since language change is inherently stochastic, at small

spatial scales we can only expect predictions of a statistical
nature. At larger scales an element of deterministic pre-
dictability emerges. Within our model, all stochasticity
arises from the randomization of initial conditions. The
effect of this randomness is strongest in the early stages of
language evolution, when the typical size of dialect
domains is small. The superposition of isoglosses lacks
a discernible pattern. This “tangle” of lines produces a
continuum of language variation, with spatial correlations
given by Séguy’s curve. As surface tension takes hold,
steered by variations in population density and system
shape, isoglosses begin to bundle and the continuum
resolves into distinct dialect regions. Both long-term
population stability and large variations in population
density play an important role. Without these ingredients
isoglosses will not have time to evolve into smooth lines,
or bundle.
The assumptions of our model are minimal, and clearly

there are many additional complexities involved in lan-
guage change which we have not captured; we discuss
below how the model might be extended to account for
some of these. Despite this simplicity, in addition to
substantially reproducing Trudgill’s predictions for
English dialects [4], we are also able to explain the
observation of both dialect continua and more sharply
bounded dialect domains. We also provide an explanation
for why boundary indentations (e.g., in coastline or in the
border between different languages) are likely to collect
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isoglosses [1]. We show that cities repel isoglosses,
explaining the origin of the Rhenish fan [43], the wavelike
spread of city language features [15], and the fact that many
dialect patterns are centered on large urban areas. We
explain why linguistic regions with high aspect ratio tend to
develop striped dialect regions [77,78]. We compute an
analytical form for Séguy’s curve [2,5,6,39] which as yet
has had no theoretical derivation. We also adapt this
derivation to deal with a population center. We quantify
how the width of a transition region [1] between dialects is
related to the strength of conformity in individual language
use and the typical geographical distances over which
individuals interact. We show how to relate the curvature of
stable isoglosses to population gradients. Finally, in
Appendix B we show how incorporating an age distribution
into the model can quantify the “‘apparent time” [58] effect
used by dialectologists to detect a linguistic change in
progress. Given these findings, we suggest that the theo-
retical approach we present would be worth further
investigation.

B. Missing pieces

The model we present is deliberately minimal: it allows
us to see howmuch of what is observed can be explained by
local interactions and conformity alone. This leads to a
simple unified picture with surprising explanatory power.
However, having chosen simplicity, we cannot then claim
to provide a complete description of the processes at play.
We now describe the missing pieces, indicating what effect
we expect them to have, and how to include them.

1. Innovation

An important aspect of language change that is not
explicitly encoded within our model is innovation: the
creation of new forms of speech. We instead assume that
there are a finite set of possible linguistic variables, and for
each one, a finite set of alternatives, all of which are present
in varying frequencies within the initial conditions of the
model. Each alternative is equally attractive so that con-
formity alone decides its fate. A new variant cannot
spontaneously emerge within the domain of another. The
model therefore evolves toward increasing order and spatial
correlation. Because of the presence of population centers
this ordering process is eventually arrested creating distinct,
stable domains. If innovation were allowed, then ordering
would be interrupted by the initialization of new features,
and Séguy’s curve would reach a steady state where the rate
of innovation (creating spatial disorder) balanced the rate of
ordering.
For a local innovation to take hold, it must overcome

local conformity, realized as surface tension and the
“shrinking droplet” effect. Several mechanisms might
allow this to happen: for example, young speakers must
recreate their language using input from parents, peers, and
other community members. This recreation process is

inherently imperfect [19], and many interactions are
between young speakers who are simultaneously assimi-
lating their language. In this sense the young are weakly
coupled to the current, adult speech community, and their
language state is subject to fluctuations which may be
sufficient to overcome local conformity for long enough to
become established. As these speakers age their linguistic
plasticity declines, older speakers die, and the change is
cemented. Other mechanisms include speech modifications
made to demonstrate membership of a social group, or a
bias toward easier or more attractive language features. To
understand mathematically the effect of innovation on
spatial evolution, we might simply allow the creation of
new variants, and then assign them a “fitness” relative to the
existing population.

2. Interaction network

By selecting a Gaussian interaction kernel, and not
distinguishing between different social groups, we are
assuming that the social network through which language
change is transmitted is only locally connected in a
geographical sense but within each locality the social
network is fully connected. That is, I will listen without
prejudice to anyone regardless of age, sex, status, or
ethnicity, as long as they live near my home. Research
into 21st-century human mobility [90,91] and the work of
linguists [55,58,61] indicates that both these assumptions
are a simplification. Human mobility patterns, and by
implication interaction kernels, exhibit heavy-tailed behav-
ior (with an exponential cutoff at large distances). In our
framework, an interaction kernel of this type, combined
with densely populated cities would allow long-range
connectivity between population centers. Long-range
interactions in phase-ordering phenomena can have sub-
stantial effects on spatial correlations and domain sizes
[92], and may effectively alter the spatial dimension of the
system [93].
Further evidence for nonlocal networks is provided by

the Frisian language, spoken in the Dutch province of
Friesland. This has a “town Frisian” dialect [68], spoken in
towns that are separated from each other by the Frisian
countryside, where a different dialect is spoken: town
Frisian is “distributed.” Within the social network these
towns are “local” (nearby) to each other. To incorporate this
effect into our model, we must either reformulate our
fundamental equation (3) to describe evolution on a more
general network or generalize our interaction kernel to
allow communication between cities. Further empirical
evidence for nonlocal interactions is provided by hierar-
chical diffusion [94], where linguistic innovations spread
between population centers, not necessarily passing
through the countryside in between. Such a process
motivated the creation of Trudgill’s gravity model [14].
In addition, mobility data [91] show that individuals

follow regular, repeating trajectories, introducing strong
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heterogeneity within the set of individual interaction
kernels. Social, as well as spatial, heterogeneity may also
be important. For example, it has been shown theoretically
[95] that the time required for two social groups to reach
linguistic consensus is highly sensitive to the level of
affinity that individuals have for their own group.

3. Linguistic space and dynamics

By using a set of linguistic variables we are treating
dialects as points in vector space. Implicit in our dynamics
are two assumptions. First, all transitions between variants
are allowed, with probabilities given only by the frequen-
cies with which the variables are used. Second, the
evolution of different linguistic variables are mutually
independent. There are cases where this is an incomplete
description. A notable example is chain shifting in vowel
sounds [58]. Linguists represents the set of possible vowel
sounds as points in a two-dimensional domain where
closeness of the tongue to the roof of the mouth and the
position of the tongue’s highest point (toward the front or
back of mouth) form two orthogonal coordinate directions
[96,97]. The vowel system of a language is then a set of
points in this domain. If one vowel change leaves a gap in
this system (an empty region of the domain), then other
vowel sounds may shift to fill this gap, producing a chain of
interconnected linguistic changes. Similarly, a change in
one vowel to bring it closer to another can push it, and then
others, out of their positions. A famous example is the
“great vowel shift” [19] in England between the 14th and
17th centuries. Another example concerns changes that
spread to progressively more general linguistic (as opposed
to geographical) contexts [81]. If we have several variables,
each signifying the presence of the change in a different
context, then it is clear that the frequency of one variable
can influence the frequency of another, contradicting our
assumption that variables are independent.
The fact that linguistic variables are sometimes depen-

dent upon one another means that, within our model, pi,
which relates the past use of some variable to the current
frequency of its ith variant, via the relationship
fiðx; y; tÞ ≔ pi½mðx; y; tÞ�, should sometimes depend on
the use of other variables, and might be adapted to capture
more than just conformity.

C. Conclusion

We conclude by noting that a major theme of the book
War and Peace by Tolstoy is the idea that history is
determined not by great individuals but rather by millions
of small choices made by the people.

To elicit the laws of history we must leave aside kings,
ministers, and generals, and select for study the homo-
geneous, infinitesimal elements which influence the
masses [98].

As pointed out by Vitány [99], Tolstoy was, in modern
terms, advocating the formulation of a statistical mechanics
of history. The work we present is an attempt to formulate
such a theory for the spatial history of language. Because of
its simplicity, dealing only with copying and movement,
our model may apply more broadly to other forms of
culture.
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APPENDIX A: DISCRETIZED EVOLUTION
EQUATION

Here, we present the computational scheme used for
solving our evolution equation (3). This is aimed at
researchers having some familiarity with computer pro-
graming, such as linguists interested in quantitative
approaches. It can also be implemented using only a
spreadsheet (see Supplemental Material [38]). The discre-
tized version of evolution equation (3) also provides a
greater intuitive understanding of its continuous counter-
part. For simplicity, we consider the V ¼ 2 model and
define f ≔ f1, m ≔ m1, pðmÞ ≔ p1ðmÞ, and note that
we need only consider the evolution of m and f
because f2 ¼ 1 − f1 ¼ 1 − f.
We begin by rewriting our evolution equation (3) in

terms of the memory and frequency fields

∂tm ¼ f −mþ σ2

2ρ
∇2ðρfÞ; ðA1Þ

where

f ¼ pðmÞ ¼ mβ

mβ þ ð1 −mÞβ : ðA2Þ

To solve Eq. (A1) on a computer, we discretize space into a
rectangular grid of square sites. We let the side of each grid
square define one unit of length. The interaction range used
in the computer calculation should be expressed in these
units. That is, if the side of a grid square is a-km long, and
the real-world interaction range is σ km, then the interaction
range used in the computer should be σc ≔ σ=a. We choose
a so that σc > 1, so speakers interact over distances greater
than one square. The subscript c distinguishes the inter-
action range measured in computer grid units from the
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interaction range in km. For each site we store three
quantities, ρij, fij, mij, where the subscripts i, j are
horizontal and vertical indices related to spatial position
by x ¼ ia and y ¼ ja. These quantities are our approx-
imations to the values of the fields ρ, f, m at the centers
of sites, and are stored in three arrays. Intuitively, we think
of each site as containing a group of a2ρij speakers, each of
whom uses variant 1 with frequency fij. The linguistic
domain of interest is the set of sites with nonzero
population density. Within the domain, sites with one or
more nearest neighbors with zero population are referred to
as boundary sites, otherwise they are bulk sites. Sites which
are not part of the domain are never updated, and it is useful
to include a border of such sites around the edge of the
rectangular grid.
The scheme we present is based on approximating the

Laplacian ∇2 ¼ ∂2
x þ ∂2

y using a central finite difference
approximation for the derivatives ∂2

x and ∂2
y. Let g be an

arbitrary function defined at every site. We define a local
average at each grid point:

hgiij ¼
1

4
ðgiþ1;j þ gi−1;j þ gi;jþ1 þ gi;j−1Þ: ðA3Þ

This is just the average of the values of g at the four nearest
neighbors of ði; jÞ. The Laplacian is then approximated:

∇2gij ≈ 4ðhgiij − gijÞ: ðA4Þ

This follows from the finite difference approximation
∂2
xg ≈ giþ1;j − 2gij þ gi−1;j, the effectiveness of which

depends on g varying slowly between sites. From
Eq. (A4) we see that ∇2g measures the extent to which
g differs from the average of its neighbors. If∇2g < 0, then
g exceeds the local average, and is less than the local
average when the inequality is reversed.
We now introduce a small discrete time step δt and write

Δmij ≔ mijðtþ δtÞ −mijðtÞ for the change in the memory
field over the time interval ½t; tþ δt�. We note also that
provided the grid is sufficiently fine, then at bulk sites
ρij ≈ hρiij, so, making use of Eqs. (A1) and (A4), we have

Δmij ≈
�
ðfij −mijÞ þ 2σ2

�hρfiij
hρiij

− fij

��
δt: ðA5Þ

At each time step Eq. (A5) is used to update the stored
values of mij for all sites in the linguistic domain, after
which the frequencies can also be updated using fij ¼
pðmijÞ. The quantity hρfiij=hρiij is the average of frequen-
cies at neighboring sites, weighted in proportion to their
populations. Using hρiij rather than ρij in the denominator
ensures that these weights sum to one. This serves two
purposes. First, it avoids the need for an additional
condition at boundary sites (intuitively, speakers in

boundary sites simply shift attention from empty neighbor-
ing squares to those which are part of the linguistic domain,
consistent with the original definition of the weighted
interaction kernel). Second, it ensures that spatially con-
stant memory and frequency fields constitute a fixed point
of the dynamics. Rule Eq. (A5) is an explicit scheme and as
such its stability requires that δt be chosen sufficiently
small. In the case of zero conformity (β ¼ 1) and constant
population density, the von Neumann stability condition
[63] is δt < 1=σ2. This serves as a guide to find δt
sufficiently small for our scheme to converge. For the
density fields and conformity values we use in this paper,
we find that δt < 1=ð4σ2cÞ is more than sufficient.
We conclude this section by explaining the linguistic

meaning of the terms on the right-hand side of Eq. (A5).
The first term, fij −mij, drives conformity. If mij > 1

2
, this

term is positive, driving the memory further towardsmij¼1

where all speakers use variant 1. Otherwise, if mij < 1
2
, the

memory is driven towards zero where no speakers do. The
second term, hρfiij=hρiij − fij, acts to equalize speech use
in the local area. If variant 1 is used more at ði; jÞ than in the
surrounding squares, then this term acts to reduce its use in
ði; jÞ. If variant 1 is used relatively less at ði; jÞ, the term has
the opposite effect.

APPENDIX B: INCORPORATING AGE
INTO THE MODEL

In order to experimentally detect a linguistic change in
progress, ideally one would like to survey the same
population of individuals, or a representative sample of
the population, at two or more points in time [1]. Such
longitudinal studies may be practically difficult to carry
out, so linguists have made use of the assumption that
speech patterns are acquired mainly in the early part of
people’s lives. The speech of a 50-year old today should
therefore reflect the speech of a 30-year old 20 years ago. It
should be noted though that speech patterns can change
throughout life [44], although more slowly in older speak-
ers. A linguistic change detected by observing different
speech patterns in the young and old is said to have been
observed in apparent time [58,59]. A famous example of
apparent time is the replacement of the term chesterfield
(meaning an upholstered multiple-person seat) in Canadian
speech with the fashionable American term couch [100]. In
this case the use of couch was shown to decrease sigmoi-
dally from ≈85% amongst teenagers to ≈5% among those
in their eighties. The apparent time theory has been tested
by comparing language surveys taken at different times and
comparing predictions based on apparent time in the earlier
sample with the observations made in the later one [101].
We note that differences between speech patterns between
the generations do not always indicate a linguistic change
in progress [44]. For example, the use of some speech
forms may change systematically with age in the same way,

SPATIAL EVOLUTION OF HUMAN DIALECTS PHYS. REV. X 7, 031008 (2017)

031008-21



generation after generation, so that the community as a
whole is in a stable state [55].
We now give a simple illustration of how age and

apparent time can be incorporated in our model. For
simplicity, we consider the progress of a straight isogloss
between two variants, driven by a slowly declining pop-
ulation density. This density variation is equivalent to a
social bias toward one variable which we call the new
variant. We let fðx; tÞ be the frequency with which the new
(spreading) variable is used at position x and time t. Note
that there is no y dependence due to symmetry. To
distinguish between young and old we introduce an age
density distribution αðaÞ giving the fraction of individuals
within the age bracket ½a1; a2� asZ

a2

a1

αðaÞda: ðB1Þ

Using this distribution we modify our original model to
account for the fact that individuals have been exposed only
to the linguistic information available in their lifetime. The
memory of a speaker with age a is therefore defined as

μaðx; tÞ ≔
Z

a

0

e−s=τ

τð1 − e−a=τÞ
�Z

R
kðx; uÞfðu; t − sÞdu

�
ds:

ðB2Þ

Note that as a → ∞ this definition coincides with our
original definition Eq. (2) of memory. In the interests of
analytical tractability, we consider the limit of small
memory decay rate (τ → ∞) in which case linguistic
memory is a simple “bus stop” average over life history:

μaðx; tÞ ¼
1

a

Z
a

0

�Z
R
kðx; uÞfðx; t − sÞdu

�
ds: ðB3Þ

We also take the limit of total conformity β → ∞ so that
language is chosen according to a simple majority rule. We
consider an exponentially decaying population density

ρðxÞ ¼ e−ϵx; ðB4Þ

where ϵ ≪ 1. The weighted interaction kernel for this
density is then

kðx;uÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ
exp

�
−
ðu − xþ ϵσ2Þ2

2σ2

�
ðB5Þ

≕ kðu − xÞ: ðB6Þ

Notice that the effect of the decaying population density is
to shift the interaction kernel to the left so that more
attention is paid to language use on that side of the listener.
To compute the isogloss velocity, we define

ηðxÞ ≔
8<
:

1 if x < 0

1
2

if x ¼ 0

0 if x > 0

ðB7Þ

and prepare the system with the initial condition

fðx; t < t0Þ ¼ ηðx − ΛÞ; ðB8Þ

where Λ is the initial location of the isogloss. Because each
speaker listens more to the speakers on their left, the
isogloss will travel right. In the limit β → ∞ then when the
memory μaðx; tÞ of a speaker, with x > Λ, reaches 1

2
, they

will switch linguistic variables. The motion of the isogloss
will then take the form of a traveling wave formed from a
superposition of traveling step functions, one for each age,

fðx; tÞ ¼
Z

∞

0

αðaÞη½x − vtþ ΛðaÞ�da; ðB9Þ

with the function ΛðaÞ > 0 and the velocity v to be
determined. According to Eq. (B9), at ta ≔ ΛðaÞ=v, a
speaker at the origin with memory of length awill be on the
point of a switching variable, so that

μað0; taÞ ¼
1

2
¼
Z

a

0

ds
a

Z
∞

0

da0
Z
R
dyαða0ÞkðyÞ

× η½yþ vs − ΛðaÞ þ Λða0Þ�

¼
Z

a

0

ds
a

Z
∞

0

da0αða0Þ
Z

ΛðaÞ−Λða0Þ−vs

−∞
kðyÞdy

≔
Z

a

0

ds
a

Z
∞

0

αða0ÞK½ΛðaÞ − Λða0Þ − vs�da0:

ðB10Þ

Here, we introduce the cumulative K of the interaction
kernel:

KðzÞ ≔
Z

z

−∞
kðyÞdy: ðB11Þ

As ϵ → 0, the isogloss velocity must also tend to zero. The
quantity

Δða1; a2Þ ≔ Λða1Þ − Λða2Þ ðB12Þ

gives the distance between the step functions for speakers
with ages a1 and a2 as jΔða1; a2Þj, and this separation must
also tend to zero as ϵ → 0. We can therefore compute a
series expansion for v in powers of ϵ by expanding the
cumulative interaction kernel KðzÞ in Eq. (B10) about
z ¼ 0 and ϵ ¼ 0. To lowest order we have

KðzÞ ¼ 1

2
þ zffiffiffiffiffiffi

2π
p

σ
þ ϵσffiffiffiffiffiffi

2π
p þ oðzÞ þ oðϵÞ: ðB13Þ
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Substituting this approximation into Eq. (B10), we have

Z
∞

0

Δða; a0Þ
σ

αða0Þda0 − av
2σ

þ ϵσ ¼ 0: ðB14Þ

It is straightforward to verify that this equation has the
solution

v ¼ 2σ2ϵ

ā
; ðB15Þ

Δða; a0Þ ¼ ða − a0Þσ2ϵ
ā

; ðB16Þ

where ā is the mean age of the population:

ā ≔
Z

∞

0

aαðaÞda: ðB17Þ

If the oldest speaker has age A, then the width of the
transition region is ΔðA; 0Þ ¼ Aσ2ϵ=ā. We provide a
concrete example using a population “pyramid” age dis-
tribution, cut off exponentially at low ages to account for
the fact that very young speakers listen to, but do not
influence, others. Letting a0 be the low age cutoff,
we define

αðaÞ ¼ 1

C
ð1 − e−a=a0ÞðA − aÞ; ðB18Þ

where C is a normalizing constant. An example of the
traveling wave Eq. (B9) generated by this age distribution
is illustrated in Fig. 21. Also shown are the results of a
numerical implementation of the full model with a dis-
cretized version of the age distribution Eq. (B18). This
discretization is necessary in order to implement the model
numerically, because the memory of each age of speaker
must be individually stored.
Finally, we consider the likely outcome of experimen-

tally sampling the use of language within this model. We let
x0 be the left boundary of the transition region (the oldest
speaker at x0 is just about to switch variable). We then
define the indicator function of the event that a speaker of
age a, located at position x, is using the new variant:

qxðaÞ ≔
�
1 if x − x0 < ΔðA; aÞ
0 otherwise:

ðB19Þ

Consider a sample of speakers with home locations X,
normally distributed around some average position x0 þ h:
X ∼N ðx0 þ h;ω2Þ. The probability that a speaker of age a
within this sample will use the new variant is then the
expectation of qXðaÞ over the position X:

E½qXðaÞ� ¼
1

2
erfc

�
h − ΔðA; aÞffiffiffi

2
p

ω

�
≕ q̄ða; h;ωÞ: ðB20Þ

An example of this distribution is illustrated in Fig. 22. In
this example, the mean sample location is the center of the
transition region, and we see that uptake of the new variant
exhibits the characteristic “S-shaped” age distribution seen
in studies of linguistic change observed in apparent time
[1,58,100].
We conclude by noting that this extension of the model

to include different memory lengths should be seen as a toy
model of the effect of age on language change. The fact that

FIG. 21. Thick dashed line shows theoretical frequency of new
variant for age distribution Eq. (B18)—using linear approxima-
tions Eq. (B15) and (B16) for vðaÞ and ΛðaÞ, and assuming
Λð0Þ ¼ 0—when a0 ¼ 10, A ¼ 90, σ ¼ 5, ϵ ¼ 0.1 at time t ¼
A=2 ¼ 45 (chosen so that oldest speaker at x ¼ 0 has just
switched variable). For these parameter values ā ¼ 35.23. Ver-
tical dashed line is drawn at location of youngest adopter of new
variable (giving width of transition region). Open circles give
frequency values using an age distribution discretized into two-
year bins, computed by numerically evolving the full model.

0.0
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FIG. 22. Expected frequency Eq. (B20) with which new variant
is used by speakers of different ages from a random sample. Mean
and variance of speaker locations relative to left boundary x0 of
transition region are h ¼ 1

2
Δð0; AÞ and ω2 ¼ 1. Model parameter

values are a0 ¼ 10, A ¼ 90, σ ¼ 5, ϵ ¼ 0.1. For these parameter
values, ā ¼ 35.23.
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older speakers tend to take longer to change their language
use is captured purely by the length of their memories. In
reality, the influence on a given speaker of the language
they are exposed to at different stages of life will be much
more complicated than our simple model [102]. For
example, if language use were determined entirely during
early life, then the forgetting curve should be peaked during
these early years—in effect, the linguistic memory should
stop “recording” once a speaker’s youth has ended. Each
speaker will respond differently to what they hear, so the
forgetting curve will not be identical for every speaker.
Such heterogeneity amongst speakers is straightforward to
incorporate, but at the cost of tractability. The advantage of
the simple approach is to illustrate the apparent time effect
in an analytically simple way.

APPENDIX C: ALLEN-CAHN EQUATION AND
OHTA-JASNOW-KAWASAKI THEORY

Here, we derive an analogue of the Allen-Cahn equation
[83] for the velocity of an isogloss, before deriving a
modified Ohta-Jasnow-Kawasaki equation [84], which
provides a simplified method for understanding the evo-
lution of spatial correlations in the model. In the binary
variant case (V ¼ 2), we have that m1 ¼ 1 −m2, so after
defining pðm1Þ ≔ p1ðmÞ and f ≔ f1, then f ¼ pðm1Þ. In
terms of f, our evolution equation (3) may be written as

∂tf ¼ p0½p−1ðfÞ�
�
f − p−1ðfÞ þ σ2

2ρ
∇2ðρfÞ

�
: ðC1Þ

Following Refs. [20,83], we introduce a unit vector ĝ,
normal to the isogloss at a point P. We let g be the
displacement from P in the direction of ĝ. At the isogloss
we have

∇f ¼
�∂f
∂g

�
t
ĝ;

∇2f ¼
�∂2f
∂g2

�
t
þ
�∂f
∂g

�
t
∇ · ĝ:

We also need the cyclic relation:�∂t
∂f

�
g

�∂f
∂g

�
t

�∂g
∂t
�

f
¼ −1: ðC2Þ

The Laplacian term in Eq. (C1) may be expanded as
follows:

∇2ðρfÞ
ρ

¼ ∇2f þ f
∇2ρ

ρ
þ 2

∇ρ ·∇f
ρ

ðC3Þ

¼
�∂2f
∂g2

�
t
þ
�∂f
∂g

�
t
∇ · ĝþ f

∇2ρ

ρ
þ 2

∇ρ ·∇f
ρ

:

ðC4Þ

For constant density, the equilibrium configuration of the
isogloss is a straight line, so the curvature κ ≔ ∇ · ĝ is zero,
and f depends only on the displacement g. Making use of
Eqs. (C1) and (C4), we see that the equilibrium equation for
f is in this case

σ2

2

d2f
dg2

¼ p−1ðfÞ − f: ðC5Þ

We now make the assumption that out of equilibrium, if
the curvature is low, and the density slowly varying,
then the profile of the transition region around the isogloss
takes its equilibrium form. We also recall our assumption
in our derivation of the full evolution equation (3) that
j∇2ρj=ρ ≪ σ2. The evolution equation (C1) may then be
written as

∂tf ¼ σ2

2
p0½p−1ðfÞ�

��∂f
∂g

�
t
∇ · ĝþ 2

∇ρ · ∇f
ρ

�
ðC6Þ

¼ σ2p0½p−1ðfÞ�
�∂f
∂g

�
t

�∇ · ĝ
2

þ∇ρ · ĝ
ρ

�
: ðC7Þ

Making use of relation Eq. (C2), we have

�∂g
∂t
�

f
¼ −σ2p0½p−1ðfÞ�

�
κ

2
þ∇ρ · ĝ

ρ

�
: ðC8Þ

Since ð∂g=∂tÞf is the isogloss velocity, and at the isogloss
we have f ¼ 1

2
, then

v ¼ −σ2β
�
κ

2
þ∇ρ · ĝ

ρ

�
: ðC9Þ

To obtain spatial correlation functions between different
modal linguistic variables, we apply the Ohta-Jasnow-
Kawasaki method [84]. We adapt the description of
OJK’s analysis given in Bray [20] to include population
density effects. As we describe in Sec. V, we label the two
alternatives for a particular variable as −1 and 1 and
introduce a smoothly varying auxiliary field mðx; y; tÞ
which gives the modal (most common) variant ϕi of
variable i as ϕiðmÞ ¼ sgnðmÞ. The unit vector ĝ may then
be written as

ĝ ¼ ∇m
j∇mj ; ðC10Þ

from which we see that the isogloss velocity is

v ¼ σ2β

�−∇2mþP
i;jĝiĝj∂i∂jm − 2ð∇ρ:∇mÞ=ρ

2j∇mj
�
;

ðC11Þ
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where i; j ∈ fx; yg. In a reference frame attached to the
interface,

dm
dt

¼ 0 ¼ ∂m
∂t þ v · ∇m: ðC12Þ

Since v∥∇m, then v ·∇m ¼ vj∇mj and ∂tm ¼ −vj∇mj, so

∂m
∂t ¼ σ2β

2

�
∇2m −

X
i;j

ĝiĝj∂i∂jmþ 2
∇ρ:∇m

ρ

�
: ðC13Þ

This is the OJK equation, modified to include variable
population density. As OJK did, we now assume that the
direction ĝ is uniformly distributed over the system, and we
replace ĝiĝj with its circular mean 1

2
δij, giving

∂m
∂t ¼ σ2β

�∇2m
4

þ∇ρ:∇m
ρ

�
: ðC14Þ

This is our modified Ohta-Jasnow-Kawasaki equation.

APPENDIX D: COMPARISON WITH A
SIMULATION OF NERBONNE

We note a link between curve Eq. (19) and a simple
model simulated by Nerbonne [39], but not characterized
analytically. The model consists of a line of discrete spatial
points, with a single reference site at one end representing a
city. In contrast to our model, all sites initially use an
identical set of N (¼ 100 in Ref. [39]) binary linguistic
variables. Evolution of language use is simulated at each
site by repeatedly selecting a variable at random and then
changing the state of the variable with probability 1

2
. For a

site at distance r from the city, the number of repeats of this
randomization process is defined as nðrÞ ≔ ⌊Crα⌋, where
the constant α measures the spatial decline of the “influ-
ence” of the city with r. Larger values of nðrÞ imply a
greater level of noisy evolution and therefore a lower
influence of the city. Linguistic distance in this model,
after each site has received its nðrÞ updates, is given by

lðrÞ ¼ 1

2
½1 − ð1 − N−1ÞnðrÞ� ≈ 1

2
½1 − e−nðrÞ=N�: ðD1Þ

In Ref. [39], two values of α are tested, α ¼ 1, 2, and the
quadratic case is identified as being consistent with
Trudgill’s macroscopic gravity model. However, we
emphasize that the two models do not make predictions
that can be directly compared: in the microscopic model
[39] no indication is given of how two centers of influence
would compete. Of interest is the fact that the α ¼ 2 case
coincides with our prediction for large r. However, this
value of α is rejected in Ref. [39] on the basis of its
sigmoidal shape for small r. Because of the presence of the

inverse sine function, this behavior is not present in our
version of Séguy’s law [Eq. (19)]. We note also that the
dynamics of Ref. [39] reduce order in the system, whereas
our model leads to increasingly ordered states.
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