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The idea of the out-of-time-order correlator (OTOC) has recently emerged in the study of both
condensed matter systems and gravitational systems. It not only plays a key role in investigating the
holographic duality between a strongly interacting quantum system and a gravitational system, it also
diagnoses the chaotic behavior of many-body quantum systems and characterizes information scrambling.
Based on OTOCs, three different concepts—quantum chaos, holographic duality, and information
scrambling—are found to be intimately related to each other. Despite its theoretical importance, the
experimental measurement of the OTOC is quite challenging, and thus far there is no experimental
measurement of the OTOC for local operators. Here, we report the measurement of OTOCs of local
operators for an Ising spin chain on a nuclear magnetic resonance quantum simulator. We observe that the
OTOC behaves differently in the integrable and nonintegrable cases. Based on the recent discovered
relationship between OTOCs and the growth of entanglement entropy in the many-body system, we extract
the entanglement entropy from the measured OTOCs, which clearly shows that the information entropy
oscillates in time for integrable models and scrambles for nonintgrable models. With the measured OTOCs,
we also obtain the experimental result of the butterfly velocity, which measures the speed of correlation
propagation. Our experiment paves a way for experimentally studying quantum chaos, holographic duality,
and information scrambling in many-body quantum systems with quantum simulators.
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I. INTRODUCTION

The out-of-time-order correlator (OTOC), given by

FðtÞ ¼ hB̂†ðtÞÂ†ð0ÞB̂ðtÞÂð0Þiβ; ð1Þ

is proposed as a quantum generalization of a classical
measure of chaotic behaviors [1,2]. Here, Ĥ is the system

Hamiltonian, B̂ðtÞ ¼ eiĤtB̂e−iĤt, and h� � �iβ denotes aver-
aging over a thermal ensemble at the temperature
1=β ¼ kBT. For a many-body system with local operators
Â and B̂, the exponential deviation from unity of a
normalized OTOC, i.e., FðtÞ ∼ 1 − #eλLt, gives rise to
the Lyapunov exponent λL.
Quite remarkably, it was found recently that the OTOC

also emerges in a different system that seems unrelated to
chaos, that is, the scattering of shock waves nearby the
horizon of a black hole and the information scrambling
there [3–5]. A Lyapunov exponent of λL ¼ 2π=β is found
there. Later it was also found that the quantum correction
from string theory always makes the Lyapunov exponent
smaller [5]. Thus, it leads to a conjecture that 2π=β is an
upper bound of the Lyaponuv exponent, which was later
proved for generic quantum systems [6]. This is a profound
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theoretical result. If a quantum system is exactly holo-
graphic dual to a black hole, its Lyapunov exponent will
saturate the bound; and a more nontrivial speculation is that
if the Lyapunov exponent of a quantum system saturates the
bound, it will possess a holographic dual to a gravity model
with a black hole. A concrete quantum mechanics model,
now known as the Sachdev-Ye-Kitaev model, has been
shown to fulfill this conjecture [2,7,8]. This establishes a
profound connection between the existence of holographic
duality and the chaotic behavior in many-body quantum
systems [9].
Recent studies also reveal that the OTOC can be applied

to study physical properties beyond chaotic systems. The
decay of the OTOC is closely related to the delocalization
of information and implies the information-theoretic def-
inition of scrambling. In the high- temperature limit (i.e.,
β ¼ 0), a connection between the OTOC and the growth of
entanglement entropy in quantum many-body systems has
also been discovered quite recently [10,11]. The OTOC can
also characterize many-body localized phases, which are
not even thermalized [10,12–15].
Despite the significance of the OTOC revealed by recent

theories, experimental measurement of the OTOC remains
challenging. First of all, unlike the normal time-ordered
correlators, the OTOC cannot be related to conventional
spectroscopy measurements, such as angle-resolved photo-
emission spectroscopy (ARPES) and neutron scattering,
through the linear response theory. Secondly, direct simu-
lation of this correlator requires the backward evolution in
time, that is, the ability to completely reverse the
Hamiltonian, which is extremely challenging. One exper-
imental approach closely related to time reversal of quantum
systems is the echo technique [16], and the echo has been
studied extensively for both noninteracting particle systems
and many-body systems to characterize the stability
of quantum evolution in the presence of perturbations
[17–19], and the physics is already quite close to OTOC.
Recently it has been proposed that the OTOC can be
measured using echo techniques [20]. In addition, there also
exists several other theoretical proposals based on the
interferometric approaches [21–23]. However, none of them
have been experimentally implemented thus far.
Here, we adopt a different approach to measure the

OTOC. To make our approach work, some extent of “local
control” is required. A universal quantum computer fulfills
this need by having “full local control” of the system—that
is, a universal set of local evolutions can be realized, and
this set of local evolutions can build up any unitary
evolution of the many-body system, both forward and
backward evolution in time. That is to say, we use a
quantum computer to perform the measurement of the
OTOC. In fact, historically, one of the key motivations to
develop quantum computers is to simulate the dynamics of
many-body quantum systems [24], and quantum simulation
of many-body dynamics has been theoretically shown to be

efficient with practical algorithms proposed [25]. Here, the
quantum computer we use is liquid-state nuclear magnetic
resonance (NMR) with molecules. In this work, we report
measurements of OTOCs on a NMR quantum simulator.
We stress that, on one hand, our approach is universal and
can be applied to any system that has full local quantum
control, including a superconducting qubit and trapped ion;
on the other hand, this experiment is currently limited to a
small size not because of our scheme but because of the
scalability issue of the quantum computer.

II. NMR QUANTUM SIMULATION OF THE OTOC

The system we simulate is an Ising spin chain model,
whose Hamiltonian is written as

Ĥ ¼
X
i

ð−σ̂zi σ̂ziþ1 þ gσ̂xi þ hσ̂zi Þ; ð2Þ

where σ̂x;y;zi are Pauli matrices on the i site. The parameter
values g ¼ 1, h ¼ 0 correspond to the traverse field Ising
model, where the system is integrable. The system is
nonintegrable whenever both g and h are nonzero. We
simulate the dynamics governed by the system Hamiltonian
Ĥ, and measure the OTOCs of operators that are initially
acting on different local sites. The time dynamics of the
OTOCs are observed, from which entanglement entropy of
the system and butterfly velocities of the chaotic systems
are extracted.

A. Physical system

The physical system to perform the quantum simulation
is the ensemble of nuclear spins provided by iodotrifluro-
ethylene (C2F3I), which is dissolved in d chloroform; see
Fig. 1(a) for the sample’s molecular structure. For this

(a) (b)

(c)

FIG. 1. Illustration of the physical system, the Ising model, and
the experimental scheme. (a) The structure of the C2F3I molecule
used for the NMR simulation. (b) The four site Ising spin chain.
A and B label two subsystems for the later discussion of the
entanglement entropy. (c) Quantum circuit for measuring the
OTOC for the general N-site Ising chain when β ¼ 0 (in our case,
N ¼ 4). Here, R̂ ¼ 1, R̂xð−π=2Þ, R̂yðπ=2Þ for Â ¼ σ̂z1, σ̂

y
1, σ̂

x
1,

respectively.
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molecule, the 13C nucleus and the three 19F nuclei (19F1,
19F2, and 19F3) constitute a four-qubit quantum simulator.
Each nucleus corresponds to a spin site of the Ising chain,
as shown in Fig. 1(b). In experiment, the sample is placed in
a static magnetic field along the ẑ direction, resulting in the
following form of the system Hamiltonian,

ĤNMR ¼ −
X4
i¼1

ω0i

2
σ̂zi þ

X4
i<j;¼1

πJij
2

σ̂zi σ̂
z
j; ð3Þ

where ω0i=2π is the Larmor frequency of spin i and Jij is
the coupling strength between spins i and j. The values of
these system parameters are given in Appendix A. The
system is controlled by radio-frequency (rf) pulses, and the
corresponding control Hamiltonian is

ĤrfðtÞ ¼ −ω1ðtÞfcos½ϕðtÞ�σ̂xi þ sin½ϕðtÞ�σ̂yi g; ð4Þ

where ω1ðtÞ and ϕðtÞ denote the amplitude and the
emission phase of the rf field, respectively. The control
pulse shape can be elaborately monitored to realize the
desired dynamic evolution. Actually, complete controllabil-
ity of such a system has been demonstrated [26], which
guarantees that arbitrary system evolution can be imple-
mented on it. Our experiments are carried out on a Bruker
AV 400 MHz spectrometer (9.4 T) at tempera-
ture T ¼ 305 K.

B. Experimental procedure

As schematically illustrated in Fig. 1(c), here we focus
on the β ¼ 0 case, and measuring the OTOC mainly
consists of the following parts.
1. Initial state preparation. This step aims at preparing an

initial state with density matrix ρ̂i ∝ Â ¼ σ̂α1 , α ¼ x, y, or z.
1.1. The natural system is originally in the thermal

equilibrium state ρ̂eq populated according to the Boltzmann
distribution. In the high-temperature approximation,
ρ̂eq ≈ 1=24ð1þP

4
i¼1 ϵiσ̂

z
i Þ, where 1 is the identity and

ϵi ∼ 10−5 denotes the equilibrium polarization of spin i.
Because there is no observable and unitary dynamical effect
on 1, effectively we write ρ̂eq ¼

P
4
i¼1 ϵiσ̂

z
i .

1.2.We engineer the system from ρ̂eq into ρ̂0 ¼ σz1. This is
accomplished in two steps: first we remove the polarizations
of the spins except for that of F2 by using selective saturation
pulses, and then we transfer the polarization from F2 to 13C.
Details of the method are described in Appendix B.
1.3. For the initial state ρ̂0 with α ¼ x, y, we need to

further rotate the spin at site 1 by a π=2 pulse around the y
or −x axes, respectively.
2. Implementation of unitary evolution of ÛðtÞ ¼

eiĤtB̂e−iĤt. The key point is that according to the Trotter
formula [25], the time evolution e−iĤt of the Ising spin
chain of Eq. (2) can be approximately simulated through
the decomposition

e−iĤmτ ≈ ðe−iĤxτ=2e−iĤzτ=2e−iĤzzτe−iĤzτ=2e−iĤxτ=2Þm ð5Þ

for small enough τ. Here, the dynamics is divided into m
pieces with t ¼ mτ, and

Ĥx ¼
X
i

gσ̂xi ; ð6aÞ

Ĥz ¼
X
i

hσ̂zi ; ð6bÞ

Ĥzz ¼
X
i

−σ̂zi σ̂
z
iþ1: ð6cÞ

Each propagator inside the bracket of Eq. (5) corresponds
to either single-spin operation or coupled two-spin oper-
ation, and can be implemented through manipulating ĤNMR

with rf control Ĥrf : single-spin operation terms are global
rotations around the x or z axis, which can be easily done
through hard pulses; the two-spin operation term e−iĤzzτ can
be generated through some suitably designed pulse
sequence based on the NMR refocusing techniques [27].
More details of the method are described in Appendix B.
The reversal of Ising dynamics eiĤt can be done in a similar
manner. Note that in the case we consider here, B̂ is a local
unitary operator on the site-N spin and B̂ ¼ σ̂γN with γ ¼ x,
y, z that can be implemented by a selective rf π pulse on the
site-N spin. Hence, for any given t, the total unitary
evolution eiĤtB̂e−iĤt can be simulated.
3. Readout. The OTOC is obtained by measuring

the expectation value of the observable Ô ¼
eiĤtB̂e−iĤtÂeiĤtB̂e−iĤtÂ. For the infinite temperature
β ¼ 0, the equilibrium state of the many-body system
Ĥ is the maximally mixed state 1=24. Since

hÔiβ¼0 ¼ Tr½ÛðtÞρ̂0Û†ðtÞÂ�; ð7Þ

when B̂ is unitary, ÛðtÞρ̂0Û†ðtÞ is a density matrix ρðtÞ
evolved from ρ0 by ÛðtÞ, as simulated in step 2. Finally,
measuring the expectation value of Â under ρðtÞ gives
hÔiβ¼0. Because the NMR detection is performed on a
bulk ensemble of molecules, readout is an ensemble–
averaged macrosopic measurement. When the system is
prepared at state ρðtÞ, the expectation value of Â can then
be directly obtained from the spectrum. See Appendix B
for details.

C. Results of OTOC

Two sets of typical experimental results of the OTOC at
β ¼ 0 are shown in Fig. 2. Here, we normalize the OTOC
by hB̂†ð0ÞB̂ð0ÞihÂ†ð0ÞÂð0Þi, and because Â and B̂† com-
mute at t ¼ 0, the initial value of this normalized OTOC is
unity. The experimental data (red points) agree very well
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with the theoretical results (blue curves). The sources of
experimental errors include imperfections in state prepa-
ration, control inaccuracy, and decoherence. See
Appendix C for more details. We also measure OTOC
for other operators (Â ¼ σ̂α1 , B̂ ¼ σ̂γ4, with α, γ ¼ x, y, z)
and they all behave similarly. The experimental results are
in Appendix B.
In both the integrable case (the first column in Fig. 2) and

the nonintegrable cases (the second and third columns in
Fig. 2), the early time behaviors look similar. That is, the
OTOC starts to deviate from unity after a certain time (for
the unit of time t, see Appendix D for details.). However,
the long time behaviors are very different between the
integrable and nonintegrable cases. In the integrable case,
after the decreasing period, the OTOC revives and recovers
unity. This reflects that the system has a well-defined
quasiparticle. And there exists an extensive number of
integrals of motion, which is related to the fact that an
integrable system does not thermalize. While in the non-
integrable case, the OTOC decreases to a small value and
oscillates, which will not revive back to unity in a practical
time scale. This relates to the fact that the information does
scramble in a nonintegrable system [11].

III. ENTROPY DYNAMICS

To better illustrate the different behaviors of the infor-
mation dynamics in the two cases of integrable and non-
integrable systems, we reconstruct the entanglement
entropy of a subsystem from the measured OTOCs.
Entanglement entropy has become an important quantity
not only for quantum information processing but also for
describing a quantum many-body system, such as quantum
phase transition, topological order, and thermalization.

However, measuring entanglement entropy is always chal-
lenging [28].
The OTOC opens a new door for entropy measurement.

An equivalence relationship between OTOCs at equilib-
rium and the growth of the second Rényi entropy after a
quench has recently been established [10], which states that

expð−Sð2ÞA Þ ¼
X
M̂∈B

hM̂ðtÞV̂ð0ÞM̂ðtÞV̂ð0Þiβ¼0: ð8Þ

In the left-hand side of Eq. (8), Sð2ÞA is the second Rényi
entropy of the subsystem A, after the system is quenched

by an operator Ô at time t ¼ 0. That is, Sð2ÞA ¼ − log ρ̂2A and

ρ̂A ¼ TrBðe−iĤtVeiĤtÞ, and V̂ ¼ ÔÔ†, up to a certain
normalization condition (see Appendix E). The right-hand
side of Eq. (8) is a summation over OTOCs at equilibrium.
M̂ is a complete set of operators in the subsystem B.
In our experiment, we choose the quench operator Ô ∝

ð1þ σ̂x1Þ at the first site, and we take the first three sites as
the subsystem A and the fourth site as the subsystem B, as

marked in Fig. 1(b). In this setting, Sð2ÞA measures how
much the quench operation induces additional correlation
between the subsystems A and B.
We take a complete set of operators in the subsystems B

as σ̂α4 (up to a normalization factor), where α ¼ 0; x; y; z
and σ̂0 ¼ 1. Since V̂ ¼ ÔÔ† ∝ ð1þ σ̂x1Þ, the right-hand
side of Eq. (8) becomes a set of OTOCs that are given by

hσ̂α4ðtÞð1þ σ̂x1Þσ̂α4ðtÞð1þ σ̂x1Þiβ¼0: ð9Þ

Notice that Tr½σ̂α4ðtÞσ̂x1σ̂α4ðtÞ� ¼ Tr½σ̂α4ðtÞσ̂α4ðtÞσ̂x1� ¼ 0; the
nonzero terms in Eq. (9) are nothing but OTOCs with B̂ ¼
σ̂α4 (α ¼ x, y, z) and Â ¼ σ̂x1, which are exactly what we

(a)

(b)

FIG. 2. Experimental results of OTOC measurement for an Ising spin chain. (a) Â ¼ σ̂z1 at the first site and B̂ ¼ σ̂x4 at the fourth site.
(b) Â ¼ σ̂x1 at the first site and B̂ ¼ σ̂y4 at the fourth site. The three columns correspond to g ¼ 1, h ¼ 0; g ¼ 1.05, h ¼ 0.5; and g ¼ 1,
h ¼ 1 of model Eq. (2), respectively. The red points are experimental data, the blue curves are theoretical calculation of OTOC with
model Eq. (2) for four sites.
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measure. That is to say, with the help of the relationship
between OTOCs and entanglement growth, we can extract
the growth of the entanglement entropy after the quench
from the experimental data.
The results of the second Rényi entropy Sð2ÞA are shown in

Fig. 3. At short time, all three curves start to grow
significantly after a certain time. This demonstrates that
it takes a certain time for the perturbation applied at the first
site to propagate to the subsystem B at the fourth site (see
the discussion of butterfly velocity below). Then, for all

three cases, Sð2ÞA ’s grow roughly linearly in time. This
indicates that the extra information caused by the initial
quench starts to scramble between subsystems A and B.
The differences lie in the long-time regime. For the

integrable model, the Sð2ÞA oscillates back to around its
initial value after some time, which means that this extra
information moves back to the subsystem A around that
time window. As a comparison, such a large amplitude
oscillation does not occur for the two nonintegrable cases

and the Sð2ÞA s saturate after growing. This supports the
physical picture that the local information moves around in
the integrable model, while it scrambles in the nonintegr-
able models [11].

IV. BUTTERFLY VELOCITY

The OTOC also provides a tool to determine the speed
for correlation propagating. At t ¼ 0, Â and B̂ commute
with each other since they are operators at different sites.
As time grows, the higher-order terms in the Baker-
Campbell-Hausdorff formula,

B̂ðtÞ ¼
X∞
k¼0

ðitÞk
k!

½H;…; ½H;B�;…�; ð10Þ

become more and more important and some terms fail to
commute with Â, at which the normalized OTOC starts to
drop. Thus, the larger the distance between sites for Â and
B̂, the later the time the OTOC starts deviating from unity.
In general, the OTOC behaves as

FðtÞ ¼ a − beλLðt−jxj=vBÞ þ � � � ; ð11Þ

where a and b are two nonuniversal constants and jxj
denotes the distance between two operators. Here, vB
defines the butterfly velocity [5,11,29–31]. It quantifies
the speed of a local operator growth in time and defines a
light cone for chaos, which is also related to the Lieb-
Robinson bound [31,32].
In our experiment, we fix Â at the first site, and move B̂

from the fourth site to the third site, and to the second site.
From the experimental data, we can phenomenologically
determine a characteristic time td for the onset of chaos in
each OTOC, i.e., the time that the OTOC starts departing
from unity. By comparing the three different OTOCs in
Fig. 4, it is clear that the closer the distance between Â and
B̂, the smaller td. In the insets of Figs. 4(a) and 4(b), we plot
td as a function of the distance, and extract the butterfly
velocity from the slope. We find that, for the OTOC with
Â ¼ σ̂z1 and B̂ ¼ σ̂xi , vB ¼ 2.10, and for the OTOC with
Â ¼ σ̂y1 and B̂ ¼ σ̂zi , vB ¼ 2.22. The butterfly velocity is
nearly independent of the choice of local operators, which
is a kind of manifestation of the chaotic behavior of the
system.

FIG. 3. The second Rényi entropy Sð2ÞA after a quench. A quench
operator ð1þ σ̂x1Þ (up to a normalization factor) is applied to the
system at t ¼ 0, and the entropy is measured by tracing out the
fourth site as the subsystem B. Different colors correspond to
different parameters of g and h in the Ising spin model. The points
are experimental data, the curves are theoretical calculations.

(a)

(b)

FIG. 4. Measurement of the butterfly velocity. (a) The OTOCs
for Â ¼ σ̂z1 and B̂ ¼ σ̂xi , with i ¼ 4 (blue), i ¼ 3 (green), and
i ¼ 2 (red). (b) The OTOCs for Â ¼ σ̂y1 and B̂ ¼ σ̂zi , with i ¼ 4

(blue), i ¼ 3 (green), and i ¼ 2 (red). The insets of (a) and
(b) show the time for the onset of chaos td for the OTOCs versus
the distance between two operators. The slope gives 1=vB. Here,
g ¼ 1.05 and h ¼ 0.5.
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V. OUTLOOK

TheOTOCprovides a faithful reflectionof the information
scrambling and chaotic behavior of quantum many-body
systems. It goes beyond the normal order correlators studied
in linear response theory, which only capture the thermal-
ization behavior of the system. Measuring the OTOC
functions can reveal how quantum entanglement and infor-
mation scrambles across all of the degrees of freedom in a
system. In the future it will be possible to simulate more
sophisticated systems that may possess holographic duality,
with larger size and different β, to extract the corresponding
Lyapunov exponents such that one can experimentally verify
the connection between the upper bound of the Lyapunov
exponent and the holographic duality.
We use liquid-state NMR as a quantum simulator for the

demonstration of OTOC measurement. NMR provides an
excellent platform to benchmark the measurement ideas and
techniques. Our work here represents a first and encouraging
step towards further experimentally observing OTOCs on
large-sized quantum systems. The present method can be
readily translated to other controllable systems. For instance,
in trapped-ion systems, high-fidelity execution of arbitrary
control with up to five atomic ions has been realized [33].
Superconducting quantumcircuits also allow for engineering
on local qubits with errors at or below the threshold [34,35],
hence offering another very promising experimental
approach. The progress in recent years in these two quantum
hardware platforms has been fast and astounding, particu-
larly in the pursuit of fabrication of quantum computing
architecture at large scale. It is reckoned that quantum
simulators consisting of tens of or even hundreds of qubits
are within reach in the near future [36–39]. Experimentalists
will see the great opportunity of applying these technologies
for studying quantum chaotic behaviors for much more
complicated quantum many-body systems.
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where OTOCs are measured in a trapped-ion quantum
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APPENDIX A: PARAMETERS OF THE SYSTEM
HAMILTONIAN

We use iodotrifluroethylene dissolved in d-chloroform
[41]. The system Hamiltonian is given by

ĤNMR ¼ −
X4
i¼1

ω0i

2
σ̂zi þ

X4
i<j;¼1

πJij
2

σ̂zi σ̂
z
j; ðA1Þ

where ω0i=2π is the Larmor frequency of spin i, andJij are
the coupling strength between spins i and j. The values of
parameters ω0i and Jij are given in Fig. 5.

APPENDIX B: EXPERIMENTAL PROCEDURE

1. Initialization

The system is required to be initialized into ρ̂0 ∝ σ̂z1 from
the equilibrium state ρ̂eq. We first exploit the steady-state
effect when a relaxing nuclear spin system is subjected to
multiple-pulse irradiation [42]. To implement this, we
apply the periodic sequence ½π1;2;4 − d� to the system,
where π1;2;4 means simultaneous π rotations on the spins
13C, F1, and F3, and d is a time delay parameter to be
adjusted; see the first part of the circuit shown in Fig. 6(a).
To do π1;2;4, we use a pulse that is composed of three
frequency components, each Hermite-180 shaped in 500
segments, with a duration of 1 ms. With increasing the
number of applied cycles, under the joint effects of
relaxation and π reversions, the equilibrium Zeeman
magnetizations hσ̂z1;2;4i gradually decay to zero. Only the
magnetization σ̂z3 is retained at last as it is the fixed point to
the periodic driving. We adjust the time interval d between
the π pulses to achieve the best-quality steady state. In
experiment, we set d ¼ 25 ms and after more than 500
cycles we find that the system is effectively steered into a
steady state ρ̂ss ∝ σ̂z3 (in this sample, we do not see
observable Overhauser enhancement). Next, with a SWAP

operation we transfer the polarization from the

FIG. 5. Characteristics of iodotrifluroethylene. Molecular struc-
ture together with a table of the chemical shifts (on the diagonal)
and J-coupling strengths (lower off diagonal), all in Hz. The
chemical shifts are given with respect to base frequency for 13C or
19F transmitters on the 400-MHz spectrometer that we use.
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high-sensitivity F2 nucleus to the low-sensitivity 13C
nucleus. Using the method, we finally get an initial state
ρ̂0 ∝ σ̂z1. The resulting experimental spectrum is shown in
Fig. 6(c).

2. Simulating time evolution of Ising spin chain

According to Eq. (5) of the main text, the key ingredient
in simulating the evolution of Ising Hamiltonian Ĥ is to
implement

e−iĤxτ=2e−iĤzτ=2e−iĤzzτe−iĤzτ=2e−iĤxτ=2: ðB1Þ

Here, except for e−iĤzzτ, all of the other four terms are
global rotation around the x (and z) axis, which can be
easily done through hard pulses. e−iĤzzτ can be generated by
manipulating the natural physical Hamiltonian ĤNMR with
a suitable refocusing scheme [43]. The basic idea is to
evolve the system with the J term in ĤNMR and then to use
spin echoes to engineer the evolution. That is to say, for
instance, for the σ̂zi σ̂

z
j term, when a transverse π pulse is

applied to reverse the polarization of one of the two spins,

the evolution is also reserved. Hence, by designing a
suitable refocusing scheme, the dynamics of Ĥzz and
−Ĥzz can be efficiently simulated.
Although a general and efficient refocusing scheme

exists for any σ̂zσ̂z-coupled evolution [27], for the present
task it is possible to find a much simplified circuit
construction. Figure 6(b) shows our ideal circuits. Let
O1 and O2 define the reference frequency for the carbon
and fluorine channel, respectively. Consider the refocusing
circuit [Fig. 6(b), left] for implementing e−iĤzzτ; it auto-
matically refocuses the fluorine spins and decouples the
terms J31, J41, and J43, and the evolution of the other terms
should fulfil the following requirements to yield the right
amount of evolution:

ðω01=2π − O1Þð4τ1 − t1 þ t2Þ ¼ 0; ðB2aÞ

πJ21=2 × 4τ1 ¼ −τ; ðB2bÞ

−πJ32=2 × t2 ¼ −τ; ðB2cÞ

πJ43=2 × t1 ¼ −τ: ðB2dÞ

(c)

(b)

(a)

FIG. 6. (a) Quantum circuit that measures the OTOCs. The first part aims to reset an arbitrary state to the desired initial state. Here, the
time interval between the π pulses is 25 ms, the number of cycles is l ¼ 500, and Gz denotes z axis gradient pulse. (b) Sequences for
implementing the dynamics of e−iĤzzτ (left) and eiĤzzτ (right). The refocusing circuits are designed to generate the right amount of
coupled evolution. (c) 13C experimental spectrum for equilibrium state (blue) and state ρ̂0 (red) after a readout pulse R̂

1
yðπ=2Þ. They are

shown at the same scale for comparison.
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The solution to the above system of equations is given
by O1 ¼ ω01=2π ¼ 15480.0 Hz, t1 ¼ 0.004935τ, t2 ¼
0.009870τ, and τ1 ¼ 0.000534τ. As to the refocusing
circuit for implementing eiĤzzτ, we find that it suffices to
just make slight changes to the circuit for −eiĤzzτ, as shown
in Fig. 6, and one can then reverse the dynamics of
all terms.
Now, the whole network for implementing Ising dynam-

ics is expressed in terms of single-spin rotations and
evolution of J terms in ĤNMR. In practice, each single-
spin rotation is realized through a selective rf pulse of
Gaussian shape, with a duration of 0.5–1 ms. We then
conduct a compilation procedure to the sequence of
selective pulses to eliminate the control imperfections
caused by off-resonance and coupling effects up to the
first order [44,45]. To further improve the control

performance, we employ the gradient ascent pulse engi-
neering (GRAPE) technique [46] on the complied sequen-
ces. Because that compilation procedure has the capability
of directly providing a good initial start for subsequent
gradient iteration, the GRAPE searching quickly finds
high-performance pulse controls for the desired propaga-
tors. The obtained shaped pulses for different sets of
Hamiltonian parameters ðg; hÞ all have numerical fidelities
above 0.999, and have been optimized with practical
control field inhomogeneity taken into consideration.
The Ising dynamics to be simulated is discretized into 20

steps, with each time step of duration τ ¼ 0.35 ms.
Choosing different operators for Â and B̂, we experimen-
tally measure the corresponding OTOC. All of the exper-
imental results are given in Fig. 7. The theoretical
trajectories are plotted for comparison. Although some

FIG. 7. Experimental results for measuring OTOCs for different Ising model parameters and different pairs of Â and B̂. The red points
are experimental data, the blue curves are theoretical calculation of OTOCs with the model, and the blue points are theoretical values
displayed for comparison.
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discrepancies between the data and the simulations remain,
the experimental results reflect very well how OTOCs
behave differently in the integrable and chaotic cases.

3. Readout

All the observations are made on the probe spin 13C.
Because we use an unlabeled sample in the real experiment,
the molecules with a 13C nucleus are present at a concen-
tration of about 1%. The NMR signal in the high field is
obtained from the precessing transverse magnetization of
the ensemble of molecules in the sample:

MðtÞ ¼ MxðtÞ þ iMyðtÞ

¼ Tr

�
ρ̂ðtÞ

�X
j

hσxji þ i
X
j

hσyji
��

: ðB3Þ

As the precession frequencies of different spins are dis-
tinguishable, they can be individually detected; e.g., we
obtain the measurements of hσ̂x1i and hσ̂y1i at the 13C Larmor
frequency. To measure hσ̂z1i, we need to apply a π=2

rotation along ŷ. By fitting the 13C spectrum, the real part
and the imaginary parts of the peaks are extracted, which
corresponds to hσ̂x1i and hσ̂y1i, respectively.

APPENDIX C: EXPERIMENTAL
ERROR ANALYSIS

The sources of experimental errors include imperfections
in initial state preparation, infidelities of the GRAPE
pulses, rf inhomogeneity, and decoherences. We make
an analysis to the data set of the case Â ¼ σ̂x1, B̂ ¼ σ̂y4
to get an understanding of the role of each type of
error source. We calculate the standard deviations

σexpt ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

20
i¼1ðhÂiiexpt − hÂiithÞ2=20

q
for the experimental

data, which are presented in Table I.
We run the initialization process 50 times and find that

the fluctuation of the initial state polarization of ρ̂0 is
around 3.40%. The fluctuation is due to (i) error in state
preparation and (ii) error in spectrum fitting. The latter can
be inferred from the signal-to-noise ratio of the spectrum,
which is estimated to be ≈2.13%.
All the GRAPE pulses for implementing e−iĤτ and eiĤτ

are of fidelities above 0.999. On such a precise level, if we
assume no other sources of error and assume that the pulse
generator ideally generates these pulses, then the exper-
imental results should match the theoretical predictions
almost perfectly.
Figure 8 plots the robustness of the GRAPE pulses in the

presence of imperfections of rf fields in the 13C channel and

TABLE I. The standard deviations of hÂi for the experiments
and numerical simulations when Â ¼ σ̂x1, B̂ ¼ σ̂y4.

g ¼ 1, h ¼ 1 g ¼ 1.05, h ¼ 0.5 g ¼ 1, h ¼ 0

σexpt 0.1097 0.0456 0.0308
σerrini 0.0340 0.0340 0.0340
σerrinhomo 0.0323 0.0150 0.0188
σerrT2

0.0461 0.0161 0.0214

FIG. 8. Robustness of the used GRAPE pulses against rf field inhomogeneity. Here, the transverse axis denotes relative error of output
field power of the 13C channel and the longitudinal axis is that of the 19F channel.Usim denotes the corresponding propagator and f is the
fidelity function.
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19F channel. To understand to what extent the rf field
inhomogeneity may affect the experimental results, we
calculate the deviation of the dynamics based on a simple
inhomogeneity model. The model assumes that the output
power discrepancy of the rf fields is uniformly distributed
between �3%. The simulated results σerrinhomo are shown in
Table I.
Another major source of error comes from decoherence

effects. We compare the experimental data to a simple
phenomenological error model, i.e., the system undergoes
uncorrelated dephasing channel, parametrized with a set of
phase flip error probabilities fpigi¼1;2;3;4 per evolution time
step t0. The density matrix ρ̂ is then, at each evolution step,
subjected to the composition of the error channels Ei for
each qubit [47]:

ρ̂ → E4∘E3∘E2∘E1ðρ̂Þ; ðC1Þ

where

Eiðρ̂Þ ¼ ð1 − piÞρ̂þ piσ̂
z
i ρ̂σ̂

z
i : ðC2Þ

with pi¼ð1−e−t0=T2;iÞ=2 (see Fig. 5 for the values of T2;i).
The results are presented in Table I. The results indicate
that, with decoherence effects taken into account, the
discrepancy between theoretical and experimental data
for g ¼ 1, h ¼ 0 is expected to be larger than that of the
other two cases, consistent with the experiment data.
In summary, we conclude that rf inhomogeneity and

decoherence effects are two major sources of errors.

APPENDIX D: UNIT OF TIME t

Our model Hamiltonian is actually written as Ĥ ¼P
ið−Jσ̂zi σ̂ziþ1 þ gσ̂xi þ hσ̂zi Þ, where we automatically set

J ¼ 1 in the main text, and we choose the natural unit
ℏ ¼ 1 throughout. So our time t is in fact in the unit of ℏ=J.

APPENDIX E: NORMALIZATION CONDITION
FOR THE ENTANGLEMENT ENTROPY AND

OTOC RELATION

The relationship between the growth of the second Rényi
entropy after a quench and the OTOCs at equilibrium is
given in Ref. [10]. For a system at infinite temperature, we
quench it with any operation Ô at t ¼ 0. So the density
matrix at time t is ρ̂ðtÞ ¼ e−iĤtÔ 1̂ Ô†eiĤt. Then we study
the second entanglement Rényi entropy between the sub-
region B, and the rest is denoted as A. The reduced density
matrix is ρ̂AðtÞ ¼ TrBρ̂ðtÞ, which gives us the entropy

Sð2ÞA ðtÞ ¼ − log TrA½ρ̂BðtÞ2�. The growth of entanglement is
related to the OTOCs via

expð−Sð2ÞA Þ ¼
X
M̂∈B

hM̂ðtÞV̂ð0ÞM̂ðtÞV̂ð0Þiβ¼0; ðE1Þ

where the summation is taken over a complete set of
operators in B and V̂ ¼ ÔÔ†. Here, we should choose
the following normalization condition:

P
M̂∈BMijMlm ¼

δimδlj, Tr½ÔÔ†� ¼ 1̂.
Here, we quench the first site and take the first three sites

as the subsystem A and the fourth site as the subsystem B,
as marked in Fig. 1(b) of the main text. Hence, we choose
Ô ¼ ð1̂þ σ̂x1Þ=2ðDþ1Þ=2 (D ¼ 4 is the total number of sites).
The complete set of operators in the subsystems B can be
taken as σ̂α4=

ffiffiffi
2

p
, where α ¼ 0, x, y, z and σ̂0 ¼ 1̂. By

summing over the measured data with the conventions
above, we can get the points in Fig. 3 of the main text. The
theoretical curves are obtained by directly computing
entanglement entropy from the density matrix.

APPENDIX F: REVIVAL TIME OF OTOC AND
THE DISTANCE BETWEEN THE OPERATORS

As we see from Fig. 2 of the main text, for the integrable
case, the OTOCs will increase back around their initial
values at some time. The revival time in fact depends on the
spatial distance between the two operators, as depicted in
Fig. 9. That is, the larger the distance, the later the revival
happens. From the relationship between the growth of the
second Rényi entropy after a quench and the OTOCs at
equilibrium given in Ref. [10], we know that it will take
longer time for the entanglement entropy to decrease back
after a local quench.
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