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The Tomonaga-Luttinger liquid (TLL) concept is believed to generically describe the strongly correlated
physics of one-dimensional systems at low temperatures. A hallmark signature in 1D conductors is the
quantum phase transition between metallic and insulating states induced by a single impurity. However, this
transition impedes experimental explorations of real-world TLLs. Furthermore, its theoretical treatment,
explaining the universal energy rescaling of the conductance at low temperatures, has so far been achieved
exactly only for specific interaction strengths. Quantum simulation can provide a powerful workaround.
Here, a hybrid metal-semiconductor dissipative quantum circuit is shown to implement the analogue
of a TLL of adjustable electronic interactions comprising a single, fully tunable scattering impurity.
Measurements reveal the renormalization group “beta function” for the conductance that completely
determines the TLL universal crossover to an insulating state upon cooling. Moreover, the characteristic
scaling energy locating at a given temperature the position within this conductance renormalization flow is
established over nine decades versus circuit parameters, and the out-of-equilibrium regime is explored.
With the quantum-simulator quality demonstrated from the precise parameter-free validation of existing
and novel TLL predictions, quantum simulation is achieved in a strong sense, by elucidating interaction
regimes which resist theoretical solutions.
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I. INTRODUCTION

In condensed-matter physics, a great challenge with
abundant technological prospects is to understand the
microscopic mechanisms of strongly correlated phenom-
ena. However, the complexity of strongly correlated
materials hampers their understanding, even more so
since already-simplified models often constitute formidable
theoretical problems. Quantum phase transitions, which
underpin many such behaviors including high-Tc super-
conductivity, may provide a wide-ranging universal frame-
work. The realization of simple well-characterized systems
for the experimental study of the strongly correlated and
quantum-critical physics is therefore desirable. Here, the
many-body physics at one dimension and a connected
quantum phase transition between metallic and insulating

states are addressed by means of a quantum simulation with
a nanoengineered circuit.
Thirty-five years ago, Richard Feynman pointed out that

quantum simulation could provide a powerful workaround
for the study of complex quantum systems. It consists in
emulating their physics in a device that is easier to control
and measure. In recent years, realizations of quantum
simulators have been demonstrated in a variety of plat-
forms, from neutral atoms and trapped ions to super-
conducting circuits [1]. Yet, quantum simulations of
physics models that are out of the reach of analytical
and numerical methods remain wanting. In the present
work, we obtain previously unavailable quantum-simulated
solutions for the transport across a 1D conductor including
a local impurity, which is described by the Tomonaga-
Luttinger model.
The Tomonaga-Luttinger model [2–4] describes mass-

less 1D electrons in local interactions. It results in collective
“Tomonaga-Luttinger liquid” (TLL) behaviors, which are
generally expected for 1D systems at low temperatures
whether the interacting particles are bosons, fermions, or
spins [3,4]. Experimental observations encompass promi-
nent TLL features (see Ref. [5] for a review): the separation
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of charge and spin degrees of freedom [6–9], the fraction-
alization of injected charges [10–13], the emergence of
quasiparticles of fractional charge [14,15], and signatures
of the quantum phase transition between metallic and
insulating states at the ballistic critical point [16–22].
Despite clear signatures of TLL behaviors being observed
in a growing number of 1Dmaterials, the challenge remains
to achieve a quantitative understanding [5]. Notably, the
extreme sensitivity of the quantum phase transition to
an insulating state, triggered in a TLL by even a single
impurity, impedes experimental explorations of real-world
1D conductors. Important successes were achieved inves-
tigating the chiral edge channels in the quantum-Hall
regime [8,9,12–15,19], a topologically protected system.
However, complications at fractional filling factors obscure
the comparison with TLL predictions [23–26]. The TLL
theory also remains incomplete, in spite of great advances
[4]. In particular, the transport across an impurity in a TLL,
a revealing probe of the underlying collective physics,
still misses a full exact treatment [27–29]. Furthermore,
obtaining quantitative predictions directly from the intrinsic
parameters characterizing a physical system constitutes an
outstanding challenge. Here, circuit quantum simulation
allows us to bypass some of the experimental and theo-
retical obstacles, thereby paving the way for investigating a
broad range of still-elusive TLL and quantum phase
transition physics, at a high-precision quantitative level.
The crossover of a 1D conductor comprising a single

static impurity toward an insulating state is a trademark
TLL signature exposing exotic features [27,30]. It obeys a
universal scaling flow, the determination of which counts
among the most theoretically challenging Luttinger physics
problems. Exact analytical solutions of the complete
universal conductance flow with respect to the voltage
and temperature were obtained only for specific intensities
of electron-electron interactions, corresponding to
Luttinger interaction parameters K ∈ f1=mg (m ∈ N)
[28,29]. Expanding upon these previous works, a novel
analytical solution is here obtained for K ¼ 2=3. Direct
quantitative predictions for a TLL with an impurity also
require a connection between the system parameters and
the characteristic scaling energy, which determines the
location within the universal flow at a given voltage and
temperature. This connection is, however, very demanding,
as it generally involves a full treatment including the
passage through the nonuniversal high-energy regime.
Although power-law dependences for this scaling energy
are established in the limits of weak and strong impurities
[27], a broader and quantitative understanding for arbitrary
scattering remains wanting. Numerically, a large variety of
methods are employed to address the problem of a TLL
with an impurity, from Monte Carlo to renormalization-
group techniques [31–38]. To our knowledge, these
methods either address a restricted range of parameters
or their exactness is difficult to ascertain mathematically

(Appendix B 5). Very reasonable findings were never-
theless obtained (see, e.g., Refs. [31,32,34,36]), including
an agreement with exact analytical results [27–29]. We
believe that it should be possible to cover reliably the
full range of parameters by combining different numerical
methods.
The paper is organized as follows. In Sec. II, we describe

the experimental implementation of the TLL model with an
impurity for different values of the Luttinger interaction
parameter K ∈ f1=2; 2=3; 3=4; 4=5g, we present signatures
of the quantum phase transition between metallic and
insulating states at the ballistic critical point, and we detail
the model of our device. In Sec. III, we focus on the
experimental determination of the universal conductance
renormalization flow along the conductor-insulator cross-
over as the temperature is changed. Then, we obtain the
quantitative relationship between the characteristic scaling
energy and the impurity strength, in Sec. IV. Section V
extends our investigation to the out-of-equilibrium regime,
at a finite dc bias. It includes the determination of the
different universal scaling curves in the nonequilibrium
limit of voltage biases large with respect to the temperature,
as well as the nontrivial transition from zero bias. Finally,
we present our conclusions and perspectives in Sec. VI.
Further technical details and additional measurements are
provided in the Appendixes.

II. CIRCUIT QUANTUM SIMULATOR

The present circuit quantum simulator does not rely on
assembling many microscopic individual constituents, a
“bottom-up” approach often used, e.g., with cold atoms [1].
Instead, we exploit a direct Hamiltonian mapping between,
on the one hand, the Tomonaga-Luttinger model for an
infinitely long 1D system of spinless electrons comprising
a local scattering center and, on the other hand, a short
spin-polarized electronic channel in series with a linear
resistance R ¼ ð1=K − 1Þh=e2 [K ¼ ð1þ Re2=hÞ−1, h the
Planck constant and e the electron charge] [22,39]. In
essence, as further detailed at the end of this section, the
collective TLL excitations can be described as gapless
bosonic density modes [3] corresponding to the electro-
magnetic-mode decomposition of a linear resistor in the
quantum circuit theory [40]. Furthermore, the TLL impu-
rity is straightforwardly implemented by the single-channel
electronic contact, of intrinsic scattering strength charac-
terized by the bare (unrenormalized) transmission proba-
bility τ of electrons.
The hybrid metal-semiconductor nanodevice shown in

Fig. 1(a) implements such a spin-polarized electronic
channel in series with a resistance, as schematically
represented. Expanding upon Refs. [20,22,41], the short
electronic channel of fully tunable τ ∈ ½0; 1� is realized
by a quantum point contact (QPC) formed in a high-
mobility Ga(Al)As two-dimensional electron gas (2DEG)
by the field effect using split gates. Other gates are tuned to
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an adjustable number of ballistic electronic channels
n ∈ f1; 2; 3; 4g, thereby realizing a linear series resistance
R ¼ h=ne2 that corresponds to the Luttinger interaction
parameter K ¼ n=ðnþ 1Þ. Note that a metallic resistance
deposited at the surface as in Ref. [20] can implement any
K < 1. A central metallic island, in essentially perfect
electrical contact with the 105-nm-deep 2DEG (see
Appendix A), completely breaks the quantum coherence
of individual electrons propagating between the QPC and
the resistance. This metallic island ascertains that QPC and
resistance constitute distinct circuit elements that are not

merged together by the nonlocal electronic wave functions.
The spin degeneracy is lifted by a perpendicular magnetic
field B ¼ 2.7 T, corresponding to the quantum-Hall regime
at filling factor 3. All relevant circuits parameters are
separately characterized: the series resistance R ¼ h=ne2,
the island geometrical capacitanceC ≃ 3.1 fF that results in
the TLL high-energy cutoff h=RC (obtained from Coulomb
diamond measurements), and the QPC bare transmission
probability τ (obtained by suppressing the TLL or Coulomb
renormalization with a large dc voltage V ∈ ½45; 60� μV).
Finally, the experiment relies on a notably precise and
reliable determination of the in situ electronic temperature
T down to 7.7 mK, at a few-percent accuracy level through
shot-noise measurements [42].
Figure 1(b) directly illustrates with R ¼ h=e2 (K ¼ 1=2)

the occurrence of a quantum phase transition between
metallic and insulating states at the ballistic critical point
τ ¼ 1. The zero-bias conductance G across the device is
shown versus electronic channel tuning τ for different
temperatures T. At τ¼1, G¼1=ðh=e2þRÞ¼Ke2=h does
not depend on T, which signals a metallic state. In
contrast, any minute backscattering (τ < 1) progressively
drives the device away from the unstable metallic fixed
point, toward the insulating low-temperature stable fixed
point G ¼ 0 (see Fig. 5 in Appendix A for other settings
of R and for similar behaviors while varying V instead of
T). These data therefore corroborate the T ¼ 0 quantum
phase transition expected for K < 1 between an insulat-
ing state at τ < 1 and a conductor at τ ¼ 1 (see also the
related observations with a resonant level impurity in
Refs. [21,43]).
We now provide a more detailed description of the model

of our device. The electronic states transmitted across a
single-channel contact can generally be written in terms
of adiabatic wave functions having essentially a 1D form.
This form is even more natural in the present integer
quantum-Hall regime, where spin-polarized electrons
propagate along the edges. One further simplification in
our system results from the small Coulomb charging energy
EC ≃ 0.3 × kB K, 2–3 orders of magnitude smaller than the
Fermi and cyclotron energies. Since TLL physics develops
only below the characteristic energy 2n × EC ¼ h=RC, the
spectra of electronic excitations can therefore be linearized
with an excellent accuracy, and the unperturbed conduction
channel (ballistic limit of the QPC) reads

H0 ¼ iℏvF

Z
dxðψþ

þ∂xψþ − ψþ
−∂xψ−Þ; ð1Þ

with ψþð−Þ the annihilation operator for the electrons
moving toward (away from) the island and vF the Fermi
velocity. In series with the channel, we engineer a linear
impedance ZðωÞ ¼ R=ð1þ iωRCÞ at R ¼ h=ne2, formed
by the n “environmental” ballistic edge channels and the
geometrical capacitance of the island. It can be represented
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FIG. 1. TLL quantum simulator and quantum phase transition
between metallic and insulating states. (a) The device’s schematic
circuit (left) and colorized e-beam micrograph (right). A QPC
set to a single electronic channel of bare transmission probability
τ is formed in a 2DEG with the split gates colored yellow.
The gates colored in green control the series resistance R and,
thereby, the Luttinger interaction parameter K ¼ 1=ð1þ Re2=hÞ.
A bright metallic island on top of Y-shaped trenches separates the
electronic channel and resistance. (b) Colored continuous lines
display the device’s conductance G ¼ dI=dV measured at zero
bias (V ¼ 0) for different temperatures T in the presence of a
series resistance adjusted to R ¼ h=e2 (K ¼ 1=2). The data are
plotted versus bare (unrenormalized) τ, which is determined
from GðV¼60 μV;T¼7.9mKÞ¼ðh=τe2þRÞ−1 (black dashed
line). The conductance vanishes upon cooling, except at the
ballistic quantum-critical point τ ¼ 1.
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as a Hamiltonian involving an infinite collection of LC
oscillators [40] (or as n ballistic edge channels and a
charging energy; see, e.g., Ref. [44]). Physically, it results
in Gaussian fluctuations of quantum and thermal origin
whose dynamics is dictated by ZðωÞ [40]:

h½Φ̂ðtÞ − Φ̂ð0Þ�Φ̂ð0Þi ¼ 2ℏ2

e2

Z
∞

0

dω
ω

ReZðωÞ
h=e2

×

�
coth

�
ℏω
2kBT

�
½cosðωtÞ − 1�

− i sinðωtÞ
�
; ð2Þ

with Φ̂ a bosonic operator corresponding to the time integral
of the voltage ûðtÞ across the impedance (∂tΦ̂ ¼ û). The
coupling between electrons and electromagnetic degrees of
freedom simply reads

HC ¼ −Q̂ðV − ∂tΦ̂Þ; ð3Þ

with Q̂ the total charge transferred across the QPC (assumed
at position x ¼ 0) given by

Q̂ ¼ −
e
2

�Z
∞

0

dx½ψþ
þψþ þ ψþ

−ψ−�

−
Z

0

−∞
dx½ψþ

þψþ þ ψþ
−ψ−�

�
: ð4Þ

Finally, the backscattering at the QPC can be modeled as

HI ¼ ℏvFr½ψþ
þð0Þψ−ð0Þ þ ψþ

−ð0Þψþð0Þ�; ð5Þ

with jrj2 ≃ 1 − τ for a near-ballistic QPC. Note that the QPC
could have also been modeled by a tunneling term between
two initially disconnected edge channels. According to the
scattering-matrix formalism, these two formulations are
essentially equivalent at low energies compared to EF, as
the only relevant QPC parameter is the bare electron trans-
mission probability τ. We select here the backscattering
formulation, which is the more natural choice for fully
exploring the crossover from a near-ballistic to a discon-
nected channel. As previously shown [22,39], at sufficiently
low energies such that ZðωÞ ≃ R, the above model reduces
to that of a TLL with a Luttinger interaction parameter
K ¼ 1=ð1þ Re2=hÞ and a single impurity. In particular, the
present backscattering formulation of the QPC directly
matches with the local sine-Gordon model. Furthermore,
beyond the universal low-energy regime, the frequency
dependence of ZðωÞ can be seen as a finite-range
electron-electron interaction in a 1D conductor [for the

specific spatial dependence, see Eq. (S13) in the supple-
mental information of Ref. [22]].

III. UNIVERSAL CONDUCTOR-INSULATOR
CROSSOVER

The continuous quantum phase transition theory
generally predicts that a system slightly detuned from
the critical point follows universal scaling behaviors
(along the crossover from “quantum criticality”) [45].
Accordingly, the TLL theory predicts a universal cross-
over to an insulating state, except at the ballistic
quantum-critical point τ ¼ 1, with all microscopic
details encapsulated into an interaction parameter K
and a scaling energy kBTI (kB the Boltzmann constant).
As a result, any observable could be recast as a function
of K, T=TI , and eV=kBTI . In our circuit implementation
and at zero bias voltage, the conductance reduces to
GðT; R; C; τÞ ¼ GKðT=TIÞ. Such universality is best
reformulated into a scale-invariant renormalization flow
equation that does not depend on the convention used
to define TI:

dg
d lnT

¼ βKðgÞ; ð6Þ

with g≡ Gh=Ke2 the dimensionless conductance and
βKðgÞ the so-called beta function that fully characterizes
the conductance scaling flow. In Fig. 2, we show
theoretical calculations and experimental quantum sim-
ulations for both βKðgÞ and GKðT=TIÞ (see below).
Let us first focus on the renormalization-group beta

function. Experimentally, βKðgÞ is determined from the
discrete differentiation of the measured conductance
δg=δ lnT. In practice, δ lnT steps range from 0.3 to 0.5,
and the temperature is always kept well below the high-
energy RC cutoff, with the hottest used temperatures
reaching at most h=25kBRC (T ∈ ½8; 18� mK with
K ∈ f1=2; 2=3; 3=4g, T ∈ ½40; 100� mK with K ¼ 4=5).
For each K, this procedure is repeated at many different
QPC tunings (approximately 200 values of τ; identical
symbols are used for the same τ). The pileup onto the same
curve of data points corresponding to different QPC
settings (different symbols) provides a direct signature of
the predicted universality. A low-pass Fourier averaging of
these data then generates the quantum-simulated βKðgÞ
(fluctuations of small period Δg < 0.07 are filtered out).
As we now show, the quantitative agreement with available
TLL predictions is remarkable, without any adjustable
parameter. Theoretical asymptotic expressions of βKðgÞ
near the weak and strong impurity limits can be obtained
perturbatively, from a poor man’s renormalization-group
approach [27]: βKðg≪1Þ≃2ð1=K−1Þg, βKð1 − g ≪ 1Þ≃
2ð1 − KÞð1 − gÞ. Beyond these limits, the full exact Bethe
ansatz solution of the TLL local (boundary) sine-Gordon
model was previously derived for specific values of the
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interaction parameter K ¼ 1=m (m ∈ N) [28,29]. In addi-
tion, we obtain analytically a novel exact solution for
K ¼ 2=3, by developing a different thermodynamic Bethe
ansatz (Appendix B 2). Both the full exact calculations
at K ¼ 1=2 and 2=3 as well as the asymptotic slopes
known for all K are accurately reproduced. This result
firmly establishes our theoretical understanding of the TLL
conductor-insulator crossover induced by an impurity as
the temperature is reduced and, altogether, validates the
precise circuit implementation of the TLL-impurity (local
sine-Gordon) model. On these grounds, our measurements
reliably provide the quantum-simulated beta function over
the complete range g ∈ ½0; 1� in the theoretically most
challenging regimes K ¼ 3=4 and 4=5.
The universal renormalization flow GKðT=TIÞ along

the crossover toward an insulating state is then derived
from the experimentally quantum-simulated βKðgÞ, by
integrating numerically Eq. (1). Following standard con-
ventions, the scaling TLL temperature TI corresponds to a
conductance midway between low-T and high-T limits
[GKðT ¼ TIÞ≡ ðKe2=hÞ=2]. The obtained experimental
quantum simulations of GKðT=TIÞ span over 6 orders of
magnitude in T=TI [Fig. 2(b)]. Comparing without adjust-
able parameters to the exact calculations at K ¼ 1=2 and

2=3 (dashed lines), we find a quantitative agreement on the
conductance always better than 0.006e2=h and 0.004e2=h,
respectively. Note a previous experimental test of
GKðT=TIÞ at K ¼ 1=5 (using TI as a free parameter and
assuming a local fractional quantum-Hall filling factor
ν ¼ 1=5 different from the bulk) [19].

IV. SCALING TEMPERATURE VERSUS
SYSTEM PARAMETERS

Within the broad quantum phase transition context, the
characteristic crossover energy determines, by delimiting
from below, the conditions under which a strongly corre-
lated “quantum-critical” state develops [45]. In addition,
any quantitative prediction for a physical observable at a
given temperature and voltage requires the knowledge of
this reference energy, here corresponding to kBTI , as it
provides the dimensionless location within the correspond-
ing universal scaling flow. However, obtaining the cross-
over scaling energy directly from the intrinsic system
parameters (such as τ, R, and C) constitutes an important
theoretical challenge, usually involving nonuniversal
behaviors at higher energies (see Ref. [46] for an alternative
theoretical approach of our device in this nonuniversal
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FIG. 2. Universal conductor-insulator crossover. In both panels, data points for a fixed device tuning of τ at different
temperatures are shown with identical symbols. For clarity, vertical shifts of 0.1 are applied between K ∈ f1=2; 2=3; 3=4; 4=5g
(R ∈ f1; 1=2; 1=3; 1=4gh=e2, respectively). Colored continuous lines represent the experimental quantum-simulated solutions,
obtained by averaging the data ensemble. Exact TLL predictions (K ∈ f1=2; 2=3g only) are shown as black dashed lines.
(a) displays the renormalization-group beta functions βKðgÞ. Individual data points are the discrete temperature differentiation, at
fixed τ, of conductance measurements δg=δ lnT, with g≡ G=ðKe2=hÞ. Black dash-dotted lines show the asymptotic βKðgÞ slopes
predicted near the g ¼ 0 and g ¼ 1 fixed points. (b) displays the universal conductance flows GKðT=TIÞ. Quantum-simulated
curves are obtained by integrating the experimental βKðgÞ shown in (a). Direct conductance measurements are also displayed
for representative settings of τ, with TIðτ; KÞ adjusted at temperatures well below the high-energy RC cutoff. Full symbols
indicate that the universality criteria T ≲ h=25kBRC is verified. Nonuniversal deviations can develop at higher temperatures (open
symbols).
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regime). In the vicinity of a continuous quantum phase
transition, a power-law increase of the crossover energy
with the distance to the quantum-critical point is generally
expected. Its critical exponent, which is identical for any
observable, counts among the essential parameters char-
acterizing the transition universality class [45,47].
Regarding the presently investigated TLL-impurity system,
a power-law dependence of TI is predicted for arbitrary K
in both asymptotic limits of weak and strong impurity
[TIð1−τ≪1Þ∝ ð1−τÞ1=ð2−2KÞ and TIðτ ≪ 1Þ ∝ τK=ð2−2KÞ]
[27]. The circuit TLL quantum simulator allows us to test
experimentally these predictions and, furthermore, opens
access to TIðτ; R; CÞ over the entire range of τ ∈ ½0; 1�.
The relation between scaling temperature TI and

circuit parameters fτ; R; Cg is obtained experimentally
by adjusting to the known GKðT=TIÞ each set of conduct-
ance measurements performed for a fixed device setting
(R, τ), at temperatures well within the universal TLL regime
(the same ranges of T as for δg=δ lnT). In practice, we
compare the data with the theoretically predicted GKðT=TIÞ
when available (K ∈ f1=2; 2=3g) and with the quantum-

simulated curves otherwise (K∈f3=4;4=5g), which all rely
on the convention GKðT ¼ TIÞ≡ ðKe2=hÞ=2. Figure 2(b)
illustrates the precision of this procedure at representative
settings of τ, with full symbols pointing out T ≲ h=25kBRC.
Note for future reference that, although nonuniversal devia-
tions toGK can develop at T > h=25kBRC [open symbols in
Fig. 2(b)], they remain relatively small up to our maximum
temperature of 100 mK (approximately h=6kBRC for
K ¼ 1=2; at K ¼ 3=4, the device is measured only up to
18 mK). The experimentally extracted TI span over 9 orders
of magnitude while varying τ from 0 to 1 (Fig. 3). The
agreement with the theory at τ ≲ 0.15 and τ ≳ 0.85 estab-
lishes the predicted asymptotic power laws (see the insets for
a log-log scale comparison). For K ¼ 1=2, the asymptotic
predictions also include the numerical value of the propor-
tionality coefficient (Appendix B 4) [40,44], which is here
experimentally validated without any adjustable parameter.
Note that such a quantitative agreement at K ¼ 1=2 further
demonstrates the precise quantum simulation of the circuit’s
model described Sec. II, including at high temperatures,
where it does not reduce to the local sine-Gordon model,
since the capacitance C cannot be neglected. Beyond these
asymptotic limits, our experimental quantum simulations
provide specific quantitative predictions at intermediate
impurity strengths.

V. OUT-OF-EQUILIBRIUM REGIME

The investigation is now extended to out-of-
equilibrium situations, by applying a dc bias voltage
V. The conductance scaling curves can be markedly
different in the nonequilibrium limit (T ¼ 0) compared
to those at equilibrium (V ¼ 0). However, the quantum
phase transition theory generically predicts the same
characteristic energy kBTI. For a nonzero voltage and
temperature, the conductance can therefore be recast as a
universal function of eV=kBTI and T=TI or, equivalently,
of eV=kBT and T=TI . Here, we experimentally establish
the uniqueness of the scaling energy kBTI and the distinct
shapes of the nonequilibrium conductance curves, as
well as the previous and novel theoretical predictions
for the TLL model with an impurity at several interaction
strengths K.
Typical conductance measurements at K ¼ 2=3 are

plotted versus voltage bias in the left-hand side in
Fig. 4(a). The displayed settings of τ [color code shown
in Fig. 4(c)] and the temperature T ∈ ½8; 55� mK are chosen
to have a matching conductance at V ¼ 0 [two distinct
values of GðV ¼ 0Þ shown] and, therefore, correspond to
the same T=TI . The expected singular (unique) character of
the scaling energy kBTI, applying to both voltage and
temperature, then translates into an identical dependence as
a function of eV=kBT. This uniqueness is directly checked
by plotting the same data versus eV=kBT in the right-
hand side in Fig. 4(a). We observe, for sufficiently
low voltages with respect to the high-energy cutoff
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FIG. 3. Scaling temperature versus impurity strength. Sym-
bols display the experimentally extracted TLL scaling temper-
ature TI versus unrenormalized transmission probability
τ ∈ ½0; 1�. Each set of identical symbols corresponds to the
same tuning of the Luttinger interaction parameter K. Con-
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1 − τ ≪ 1. The fully quantitative K ¼ 1=2 prediction is com-
pared to the data without any adjustable parameter. At other
K ∈ f2=3; 3=4; 4=5g, the unknown multiplicative theoretical
factor is freely adjusted. The same data and predictions are also
shown in a log-log scale for τ < 0.15 (bottom-left inset) and
τ > 0.85 (top-right inset).
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(eV ≪ h=RC ≈ 0.1 meV), the collapse on a single curve of
data sets measured at broadly varying temperatures, differ-
ent from each other by a factor of up to 7. The dashed lines
represent the theoretical predictions without any additional
parameter than the value of T=TI fixed by the correspond-
ing zero-bias conductance. The crossover from thermal
(eV ≪ kBT) to nonequilibrium (eV ≫ kBT) regimes is
further investigated in Fig. 4(b), for different
K ∈ f1=2; 2=3; 4=5g. At a finite temperature, the full
thermal to nonequilibrium crossover upon increasing
V is exactly calculated at K ¼ 1=2 [28,29] and here at
K ¼ 2=3 (Appendix B 2). We systematically observe
a good agreement between the conductance data at
eV < h=6RC and quantitative crossover predictions, includ-
ing the expected crossings with GT=TI¼0

K ðeV=kBTIÞ. For
relatively large bias voltages, the finite-temperature calcu-
lations converge toward GT=TI¼0

K , with discrepancies sys-
tematically smaller than 0.01e2=h at eV=kBT ≳ 12. In
Fig. 4(c), we specifically study the universal conductance
scaling in the nonequilibrium limit GT=TI¼0

K , which is known
exactly for all K in contrast to finite temperatures [28,29].
Marked differences with the corresponding temperature
(V ¼ 0) scaling GKðT=TIÞ are expected to develop as
interactions get stronger (as K is reduced). This difference
is illustrated by the distinct shapes of the continuous and
dash-dotted lines. Only those data points expected close to
this limit [eV ∈ ½12kBT; h=6RC�, shown as full symbols
in Fig. 4(b)] are displayed. Note that relatively small but
significant deviations between data and theory appear at

K ¼ 2=3 and further develop atK ¼ 1=2. We attribute these
to a heating of the central metallic island by the injected
Joule power at a finite bias voltage. Electron-phonon cooling
is indeed very inefficient, while outgoing electronic heat
flow is lower with a larger series resistance and further
reduced by heat Coulomb blockade [48]. The device,
therefore, does not truly operate as a quantum simulator
in the nonequilibrium regime, as such heating is not included
in the TLL model. Nevertheless, the overall agreement with
the theory remains remarkable, especially since it is a direct
comparison without any adjustable parameters. Moreover,
heating could, in principle, be taken into account in a refined
but fully characterized model involving the known electron-
phonon heat flow (Appendix A 1).

VI. CONCLUSION AND OUTLOOK

We have realized an analog quantum simulator for the
Tomonaga-Luttinger model with a single impurity, using a
broadly tunable and fully characterized quantum circuit.
The device was operated at four different values of the
Luttinger interaction parameter (K∈f1=2;2=3;3=4;4=5g),
for which we completely determined the distinct conduct-
ance scaling flows to an insulating state as well as the
relations connecting the scaling energy to the impurity
scattering strength and also explored the nontrivial cross-
overs from thermal to nonequilibrium regimes. For
K ∈ f1=2; 2=3g, the quantitative match of data and theory,
without any fitting parameter, establishes experimentally
the yet-untested TLL predictions, including our novel
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FIG. 4. Out-of-equilibrium conductance renormalization. Symbols in all panels display the measured differential conductance versus
several normalizations of the dc bias voltage V. For each device setting of K and τ [color code in (c)], TI is separately determined from
GðV ¼ 0Þ (Fig. 3). Theoretical predictions are shown for T ¼ 0 [continuous lines; see Refs. [28,29] and Eq. (B6)] and for values of
T=TI fixed by the corresponding data [dashed lines; see Refs. [28,29] and Eqs. (B1) and (B3)]. In (b),(c), we apply 0.15 vertical shifts
between different K ∈ f1=2; 2=3; 4=5g. (a) illustrates the eV=kBT universality. Data obtained at K ¼ 2=3 for several settings of fτ; Tg,
each corresponding to the same GðV ¼ 0Þ (two values shown), are plotted versus V (left side) and eV=kBT (right side). (b) shows the
nontrivial thermal-nonequilibrium crossover as V is increased, for the representative settings τ ¼ 0.62 and 0.94 at T ¼ 7.7 mK. We
show only jeVj < h=6RC data points, sufficiently below the high-energy cutoff. Large eV=kBT > 12 are signaled by full symbols.
(c) provides a parameter-free comparison between theoretical GT=TI¼0

K ðeV=kBTIÞ and data points within jeVj ∈ ½12kBT; h=6RC�. The
distinct GV=VI¼0

K ðT=TIÞ universal scalings at equilibrium are also plotted, versus T=TI , as gray dash-dotted lines.
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K ¼ 2=3 exact analytical solution. As the observed
precise agreement also demonstrates the device’s
quantum-simulator quality, the investigation of interac-
tion regimes that remain both analytically and numeri-
cally challenging provides novel quantum-simulated
solutions for the full conductance scaling flow (for
K ∈ f3=4; 4=5g) and for the characteristic TLL scaling
energy (at intermediate scattering strengths). In practice,
it is now possible to evidence 1D correlated physics by
comparing with these quantum simulations. Beyond
Luttinger liquids, the significance of our results extends
to the general field of continuous quantum phase tran-
sitions, whose study in simple and well-controlled nano-
engineered circuits was still limited to universality
classes connected with the Kondo effect [21,22,43,
49–52]. Notably, our data establish in a different context
the generic expectations of universal scaling behaviors
and of a parameter-space power-law broadening for
quantum criticality upon increasing the temperature.
Finally, the device’s quantum point contact of fully
adjustable bare transmission probability τ emulates an
arbitrary single-channel short coherent conductor. This
work therefore directly addresses the modified transport
properties of quantum components when embedded into a
circuit, a Coulomb-induced quantum phenomenon. The
present investigation goes beyond the known dynamical
Coulomb blockade limit of a tunnel junction (τ ≪ 1) in
series with a linear impedance [40]. Compared to pre-
vious experiments at intermediate τ [20,22,41], we here
broadly investigate the universal regime arising at low
temperatures.
The demonstrated TLL quantum simulator opens the

path to in-depth quantitative investigations of various facets
of correlated physics. These encompass statistical, thermal,
and dynamical phenomena now accessible within the
present circuit implementation and include natural impli-
cations for quantum nanoelectronic engineering [20,48,53].
Notably, such hybrid metal-semiconductor circuits provide
a coveted gateway for exploring novel exotic quasiparticles
(in particular, the fractional TLL quasiparticles of anyonic
statistics [30], further than the restricted fractions and
avoiding the obscuring complications of quantum-Hall
systems), the quench dynamics of quantum phase transi-
tions (by driving the TLL transition between metallic and
insulating states through a rapid variation of the local
impurity or of the global Luttinger parameter), or the 1D
correlated physics beyond the short-range interaction para-
digm of the TLL model (by the circuit nanoengineering of
finite-range electron-electron interactions [22]).
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APPENDIX A: EXPERIMENTAL METHODS

1. Sample

The sample consists of a Ga(Al)As two-dimensional
electron gas buried 105 nm below the surface (density
2.5 × 1011 cm−2, mobility 106 cm2V−1 s−1). Its nano-
structuration is performed by standard e-beam lithography,
dry etching, and metallic deposition. The central metallic
island (nickel [30 nm], gold [120 nm], and germanium
[60 nm]) forms an Ohmic contact with the 2DEG (by
thermal annealing at 440° C for 50 s). The quality of this
Ohmic contact is completely characterized, through the
individual determination of the electron reflection proba-
bility at the metal-2DEG interface for each connected
quantum-Hall channel. We find a negligible reflection
probability, below ≲0.001% (the statistical uncertainty)
for all used channels. The typical electronic-level spacing
in the metallic island is estimated to be smaller by more
than 4 orders of magnitude than the thermal energy
(δ ≈ kB × 0.2 μK). Combined with the low number of
outgoing channels (up to five), this small spacing com-
pletely ascertains that the quantum coherence of individual
electrons is broken between the QPC and series resistance.
The sample is tuned in the integer quantum-Hall regime
at filling factor three. This tuning not only breaks the
spin degeneracy of electronic channels but also allows
for perfectly transmitted (ballistic) channels across the
QPCs, thanks to the topological protection of the chiral
quantum-Hall channels. Finally, the charging energy of the
island EC ≡ e2=2C ≃ kB × 0.3 K is obtained by standard
Coulomb diamond characterization, from the dc voltage
height Vdiam of the observed diamonds (EC ¼ eVdiam=2).
Note that, in the nonequilibrium regime, an improved
device modeling including the island’s Joule heating by
the applied dc voltage bias could be developed without
unknown parameters, using the electron-phonon heat
transfer previously obtained for this metallic island:
Jphheat ≃ 3.9 × 10−8ðT5.85

Ω − T5.85Þ W, with TΩ the elec-
trons’ temperature in the island [48]. Note also that the
same sample was recently used in Ref. [52]. The most
important difference with this previous work is that the
device was tuned in a regime where the island’s charge is
quantized in Ref. [52], which allowed us to implement the
“charge” equivalent of a magnetic Kondo impurity. In
contrast, there is no trace of charge quantization here,
because at least one connected channel is set in the
ballistic regime [42,54].
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2. Experimental setup

The device is fixed to the mixing chamber plate of a
cryofree dilution refrigerator. Electrical measurement
lines connected to the sample include several filters and
thermalization stages, as well as two shields at the base
temperature that screen spurious high-frequency radiations
(see Ref. [42] for further details on the same setup).
Conductances are measured by standard lock-in techniques
at low frequencies, below 200 Hz.

3. Results’ reproducibility

Figure 5 provides additional evidence of the quantum
phase transition between metallic and insulating states at
the ballistic critical point, both at different settings of the
Luttinger interaction parameter and also from the voltage
bias dependence.

The robustness of our results on the conductance scaling
flow and on the characteristic scaling energy are further
ascertained by implementing an equivalent circuit configu-
ration with a different physical realization of the QPC for
the series resistances R ∈ f1; 1=2g × h=e2: The QPC is
additionally formed with the top-left split gate colored
green in Fig. 1(a) (instead of the yellow split gate in the
article). As shown in Fig. 6(a), the experimental beta
functions (continuous lines for the data shown in the main
article and dash-dotted lines for the additional data)
extracted in both equivalent configurations are very close,
although the noise level is larger for the additional data.
These beta functions lead to indistinguishable GKðT=TIÞ
[continuous and dash-dotted lines in the inset in Fig. 6(b)].
The relationships between TI and τ are also identical at
experimental accuracy, as shown in the main panel in
Fig. 6(b).
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FIG. 5. Quantum phase transition between metallic and insulating states. (a),(b),(c) Colored continuous lines display the device’s
conductance G ¼ dI=dV measured at T ¼ 7.7 mK and different dc bias voltage V for a series resistance set to R ¼ f1; 1=2; 1=4g ×
h=e2 (K ¼ f1=2; 2=3; 4=5g). The data are plotted versus bare transmission probability τ. (d) Colored continuous lines display G ¼
dI=dV measured at V ¼ 0 for different T and a series resistance set to R ¼ h=4e2 (K ¼ 4=5) versus bare transmission probability τ.
Whatever K (R), the conductance progressively vanishes as V or T is reduced except at the ballistic quantum critical point τ ¼ 1.
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APPENDIX B: THEORETICAL MODEL
AND PREDICTIONS

1. Full scaling flow predictions for K = 1=2

The TLL-single-impurity model (the local sine-Gordon
model) is exactly solved for K ¼ 1=m (m ∈ N) versus
arbitrary combinations of the voltage and temperature
[28,29]. For K ¼ 1=2 (corresponding to R ¼ h=e2), the
prediction for the universal conductance renormalization
curve reduces to a simple analytical expression:

GT=TI
K ðeV=kBTIÞ

¼ e2

2h

�
1−

c1TI

2πT
Re

�
Ψ0
�
1

2
þc1TI

2πT
þ ieV
4πkBT

���
; ðB1Þ

where Ψ is the digamma function. The numerical factor
c1 ≃ 1.01 is adjusted to fulfill the conventional criterion
GKðT ¼ TIÞ ¼ ðKe2=hÞ=2 ¼ e2=4h (at V ¼ 0). Note that
we use here the expression given in the arXiv version of
Ref. [29], which corrects the expression given in the
Physical Review papers [28,29] by a factor of 1=2 on the
voltage bias dependence. With this correction, Eq. (B1)
precisely matches asymptotically, at max½eV; kBT� ≪ kBTI ,
with both the well-tested dynamical Coulomb blockade
theory [40,42,55] and a new perturbative Keldysh calcu-
lation (see Sec. B 4). Equation (B1) quantitatively corre-
sponds to the K ¼ 1=2 theory displayed in Figs. 2 and 4.
Remarkably, the same renormalization function applies to
the conductance along the crossover from two-channel
Kondo quantum criticality to a Fermi liquid in the charge
Kondo implementation [44,52,56].

2. Novel full scaling flow predictions for K = 2=3

We develop a different thermodynamic Bethe ansatz to
account for the full voltage and temperature dependence
of the universal conductance renormalization curve at
K ¼ 2=3 (R ¼ h=2e2). The tunneling in a resistive envi-
ronment problem maps onto the nonequilibrium local
(boundary) sine-Gordon model [39] (at sine-Gordon cou-
pling β ¼ ffiffiffiffiffiffiffiffiffi

8πK
p

), which has been solved exactly [28,29]
when K ¼ 1=m with m ∈ N. The solution relies on the
integrability of the sine-Gordon model and proceeds by
identifying the quasiparticles (the sine-Gordon solitons Sþ
and antisolitons S−), diagonalizing the boundary interac-
tion, and then averaging the current operator in a thermal
gas of solitons and antisolitons, which are interacting
particles (they scatter among each other nontrivially).
However, when K−1 ∉ N, the scattering between quasi-
particles is no longer diagonal; i.e., the scattering process
(SþðpÞ; S−ðp0Þ) → (S−ðpÞ; Sþðp0Þ), with p the momen-
tum of solitons, has a nonvanishing amplitude. Since the
solitons can change their internal quantum number during a
scattering event, it is no longer possible to derive the
thermodynamics of the gas of quasiparticles.
This complication is overcome by building explicitly

new quasiparticle modes by means of the algebraic Bethe
ansatz [57]: Those modes are technically obtained as states
diagonalizing the transfer matrix. For K ¼ 2=3, this proc-
ess yields quasiparticles Aa (a ∈ fs; 0; 0̄gÞ diagonalizing
the scattering between quasiparticles [58] and making it
possible to do the thermodynamics of this new gas. In this
new gas of interacting quasiparticles, As is a neutral object
that describes indifferently solitons or antisolitons and
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FIG. 6. Reproducibility in equivalent circuit configurations. (a) Renormalization beta function for two physical implementations of the
QPC in series with a linear resistance R ∈ f1; 1=2g × h=e2. The continuous lines show the same experimental quantum simulations
displayed Fig. 2(a), while the dash-dotted lines are obtained with another QPC (at a lower signal-to-noise level). (b) The experimental
scaling temperature TI (symbols) does not depend on the impurity realization by different QPCs at our experimental accuracy (different
superimposed symbols correspond to different physical realizations of the QPC). Inset: Equivalence of the simulated renormalization
flows GKðT=TIÞ (continuous lines, main article data; dash-dotted lines, additional data).
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carries the kinetic energy, whereas A0;0̄ are massless
quasiparticles (no kinetic energy) with charge �2e. A
(positive) voltage bias tends to populate A0 states and to
deplete A0̄ states and is accounted for by an appropriate
chemical potential on the A0;0̄ quasiparticles.
By making use of the boundary Yang-Baxter equation,

we then can derive the boundary scattering matrix that
mixes the modes A0 and A0̄. We thus have at hand all the
ingredients for a complete and exact description of the
system out of equilibrium: (i) a gas of interacting quasi-
particles with known thermodynamics (even including the
voltage bias) and (ii) a boundary scattering matrix describ-
ing electrical transfers across the junction.
The net result is that the electrical current through the

structure can be exactly written as

IðV; T; T̃IÞ ¼
2qskBT

h

Z
dθ½ρ0ðθÞ − ρ0̄ðθÞ�T IðθÞ; ðB2Þ

where qs ¼ e is the electrical charge of the sine-Gordon
solitons, θ ¼ lnðvFp=kBTÞ is a rapidity (the logarithm
of the energy of an individual particle) parametrizing
the momentum p of solitons (vF is the Fermi velocity in
the 2DEG), and T I ¼ ð1þ e−2ðθ−ln T̃I=TÞÞ−1 is the proba-
bility that an incoming A0 quasiparticle be scattered
as an outgoing A0̄ particle at the junction. Note that, in
this approach, the scaling temperature T̃I (we refer to
it as the “TBA scale”) is defined by the relation
T Iðp ¼ kBT̃I=vFÞ ¼ 1

2
; i.e., an incoming quasiparticle of

type A0 is scattered as an outgoing A0̄ quasiparticle with
probability 1=2. The densities of quasiparticles ρaðθÞ are
obtained via a thermodynamical Bethe ansatz on the gas of
interacting quasiparticles of type Aa and are written in a
standard way using the so-called pseudoenergies ϵaðθÞ. The
current in terms of the pseudoenergies reads

I

�
T

T̃I
;
eV

kBT̃I

�
¼ 2ekBT

h

Z
∞

−∞

dθ

1þ ðT̃I
T e−θÞ2

× ∂θ ln
1þ e−ϵ0ðθÞþðeV=kBTÞ

1þ e−ϵ0ðθÞ−ðeV=kBTÞ
; ðB3Þ

whereas the ϵa are determined by integral equations:

ϵ0 ¼ −
1

2π

1

cosh θ
⋆ lnð1þ e−ϵsÞ; ðB4Þ

ϵs ¼ eθ −
1

2π

1

cosh θ
⋆ ln½ð1þ e−ϵ0þðeV=kBTÞÞ

× ð1þ e−ϵ0−ðeV=kBTÞÞ�: ðB5Þ

This prediction quantitatively corresponds to the K ¼ 2=3
theory displayed in Figs. 2 and 4. Based on this full
solution, we find c1 ¼ T̃I=TI ≃ 0.77 for the proportionality
coefficient between the TBA scale T̃I in Eq. (B3) and the

scaling TLL temperature TI used in the manuscript [which
is defined using the standard convention GKðT ¼ TIÞ ¼
ðKe2=hÞ=2 ¼ 2e2=6h, at V ¼ 0].

3. Nonequilibrium (T = 0) scaling
predictions for arbitrary K

In a first step, we write down the T ¼ 0 predictions in
terms of the TBA temperature scale T̃I used in Refs. [28,29]
and also used to formulate the newK¼2=3 prediction in the
previous section [Eq. (B3)]. Then, we connect T̃I with the
scaling TLL temperature TI defined such as GKðT ¼ TIÞ≡
ðKe2=hÞ=2 at V ¼ 0. These predictions are used for the
nonequilibrium theory curves shown in Fig. 4.
First, the differential conductance G≡ dI=dV is calcu-

lated from the derivative of the current written at T ¼ 0 in
terms of two different power series for the regimes of high
and low voltages, which together cover the full range of
voltages [28,29]:

IðVÞ ¼
8<
:

VKe2
h ½1 − K

P∞
n¼1 anðKÞ × ðVVI

Þ2nðK−1Þ�
e2V
h

P∞
n¼1 anð1KÞ × ðVVI

Þ2n½ð1=KÞ−1�;
ðB6Þ

where the functions anðxÞ read

anðxÞ ¼ ð−1Þnþ1

ffiffiffi
π

p
ΓðnxÞ

2ΓðnÞΓ½3
2
þ nðx − 1Þ� ; ðB7Þ

and with the scaling voltage VI related to the TBA
temperature scale T̃I through [29]

eVI ¼
2

ffiffiffi
π

p
Γð 1

2ð1−KÞÞ
KΓð K

2ð1−KÞÞ
kBT̃I: ðB8Þ

Second, we determine the quantitative factor c1 ≡ T̃I=TI
connecting the TBA temperature scale (and, therefore, VI)
with the scaling TLL temperature. It is most straightfor-
ward if the conductance is known for arbitrary T=T̃I at
V ¼ 0. In that case, c1 is simply given by the temperature
ratio T̃I=T for which the conductance takes the value
ðKe2=hÞ=2, since it also corresponds to T ¼ TI. In prac-
tice, we find c1 ≃ 1.01 and 0.77 for K ¼ 1=2 and K ¼ 2=3,
respectively. In the absence of a full theoretical solution
versus T=T̃I , such as for K ¼ 4=5 in Fig. 4, a different
approach is needed as now detailed. In essence, the low-
temperature and low-voltage asymptotic functions for the
conductance are connected one to another through new
perturbative calculations (an identical connection can also
be made using the dynamical Coulomb blockade theory).
This link establishes a bridge between the quantum-
simulated equilibrium conductance curve GKðT=TIÞ
and the nonequilibrium (T ¼ 0) predictions of Eq. (B6)
versus eV=kBT̃I , thereby connecting TI and T̃I . Now, more
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specifically, we establish asymptotic results in the limit
max½eV; kBT� ≪ kBTI by means of a Keldysh perturbative
calculation of the current, yielding [59]

IðT; VÞ ¼ AK

�
T
TI

�ð2=KÞ−1
Im

� ΓðK−1 þ i eV
2πkBT

Þ
Γð1 − K−1 þ i eV

2πkBT
Þ
�
;

ðB9Þ

where AK is a numerical prefactor not needed here.
Expression (B9) leads to the prediction of a universal ratio
between the conductance in the low-voltage T ¼ 0 regime,
on the one hand, and the low-temperature V ¼ 0 regime, on
the other hand:

GðT ¼ 0; eV=kB ≪ TIÞ
GðT ≪ TI; V ¼ 0Þ ¼ 2K−1 − 1

ΓðK−1Þ2
�

eV
2πkBT

�ð2=KÞ−2

¼ αKPTðKÞ ×
�
eV
kBT

�ð2=KÞ−2
:

ðB10Þ

Note that the same ratio can be obtained from the
asymptotic, low-energy limit predictions of the dynamical
Coulomb blockade theory using the corresponding series
resistance R ¼ ðK−1 − 1Þðh=e2Þ [40,42,55]. On the one
hand, the low-voltage conductance asymptote is given by
the first term of the lower series in Eq. (B6) and involves as
the only unknown variable the scaling TBA temperature T̃I .
On the other hand, the low-temperature conductance
asymptote at zero bias voltage scales as

GKðT → 0; V ¼ 0Þ ¼ e2

h
bðKÞ ×

�
T
TI

�ð2=KÞ−2
; ðB11Þ

with bðKÞ a numerical coefficient that depends on the
quantitative definition of the scaling temperature TI ,
here based on the standard convention GKðT ¼ TIÞ≡
ðKe2=hÞ=2. At K ¼ 4=5, in the absence of a full theoretical
prediction at equilibrium, this convention is implemented
using the experimentally quantum-simulated solution,
which gives bð4=5Þ ≃ 0.97, and, comparing the resulting
low-voltage to low-temperature ratio with Eq. (B10), we
obtain c1 ≡ T̃I=TI ≃ 0.58.

4. Exact quantitative predictions for TI versus
physical parameters at K = 1=2

Although the asymptotic power-law behaviors TIðτ≪
1Þ∝ τ½−K=ð2−2KÞ� and TIð1 − τ ≪ 1Þ ∝ ð1 − τÞ½1=ð2−2KÞ� are
known for arbitrary values of K [27], the numerical
prefactor is generally unknown and depends on the
specific, nonuniversal “high-temperature” physics. In par-
ticular, since the studied circuit reduces to the local sine-
Gordon model only at low energies with respect to the

capacitive h=RC cutoff, the local sine-Gordon solutions
obtained at K ¼ 1=m (m ∈ N) and here at K ¼ 2=3 are not
sufficient to connect quantitatively TI to the circuit param-
eters τ, R, and C. However, in the special case K ¼ 1=2
and for the present circuit implementation (R ¼ h=e2),
exact quantitative results have previously been obtained for
the conductance versus physical parameters [44,60],
thereby giving access to the numerical value of TI at
τ ≪ 1 and 1 − τ ≪ 1, as detailed below.
First, for τ ≪ 1, the conductance reads at asymptotically

low temperatures and zero bias voltage [Eq. (34) in
Ref. [60] with r ¼ 0 and GL ¼ τe2=h; note that the exact
same prediction can be obtained from the dynamical
Coulomb blockade theory [40]]

GMAðT → 0Þ ¼ τ
e2

h
2π4

3 expð2γÞE2
C
ðkBTÞ2: ðB12Þ

This prediction can be matched with the first term of the
T=TI → 0 series expansion of the TLL K ¼ 1=2 analytical
expression Eq. (B1):

GK¼1=2ðT → 0Þ ¼ e2

h
π2

6

�
T

c1TI

�
2

; ðB13Þ

with c1 ≃ 1.01. By identification, we find

kBTτ≪1
I ¼ expðγÞEC

2πc1
ffiffiffi
τ

p ; ðB14Þ

which is displayed without adjustable parameters for
τ < 0.3 as the K ¼ 1=2 (lower left) black continuous line
in Fig. 3.
Second, for 1 − τ ≪ 1, the conductance reads at asymp-

totically low temperatures and zero bias voltage [Eqs. (38)
and (26) in Ref. [44] ]

GFMðT → 0Þ ¼ e2

2h

�
1 −

expðγÞEC

2πT
ð1 − τÞ

�
: ðB15Þ

The corresponding first term in the series expansion of the
analytical prediction Eq. (B1) at T=TI → þ∞ reads

GK¼1=2ðT → 0Þ ¼ e2

2h

�
1 −

πc1TI

4T

�
: ðB16Þ

By identification, we find

kBT1−τ≪1
I ¼ 2 expðγÞEC

π2c1
ð1 − τÞ; ðB17Þ

which is displayed without adjustable parameters for
τ > 0.7 as the K ¼ 1=2 (higher right) black continuous
line in Fig. 3.
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5. Numerical investigations of 1D systems
with an impurity

The main challenge with exact 1D lattice simulations,
including density-matrix renormalization-group approaches
[61], is that capturing the physics down to low energies
would require an extremely large number of sites (about
104–105; see Ref. [33]), which can be achieved within
approximate schemes such as the truncated functional
renormalization-group method that is most reliable for weak
interactions (small 1 − K) [33,34,37] or the multiscale
entanglement renormalization ansatz that best captures the
low-energy behaviors [35,38]. Beside lattice simulations,
the local sine-Gordon model for infinitely long 1D systems
in the universal TLL regime with one impurity can be
addressed exactly by quantum Monte Carlo or numerical
renormalization-group methods. However, as exact quantum
Monte Carlo solutions are usually computed only at discrete
imaginary times [31], obtaining the dc conductance involves
an analytical continuation whose outcome depends on the
critical choice of the functional used to fit the numerical data
[4,32]. This difficulty can be avoided in real-time quantum
Monte Carlo implementations [32] at the cost of reintro-
ducing the so-called “dynamical sign problem,” which limits
how low in energy the computations can be made. A
particularly powerful approach to the local sine-Gordon
model [36] is provided by a more recently developed
numerical renormalization-group treatment, which allows
for the unambiguous determination of the conductance.
Most of the parameters’ range is accessible by this approach,
although it is numerically challenging to address the limit
case of small interaction strengths (1 − K ≪ 1). Note that, to
our knowledge, there is at this time no numerical simulation
of the full circuit model quantum simulated by our device
and described in Sec. II (including deviations from the
local sine-Gordon model at large energies where the
capacitance is not negligible). Such full model simulations
are required to connect system parameters (here τ, R, and C)
and the scaling energy (TI).
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