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While Hermiticity lies at the heart of quantum mechanics, recent experimental advances in controlling
dissipation have brought about unprecedented flexibility in engineering non-Hermitian Hamiltonians in
open classical and quantum systems. Examples include parity-time-symmetric optical systems with gain
and loss, dissipative Bose-Einstein condensates, exciton-polariton systems, and biological networks.
A particular interest centers on the topological properties of non-Hermitian systems, which exhibit unique
phases with no Hermitian counterparts. However, no systematic understanding in analogy with the periodic
table of topological insulators and superconductors has been achieved. In this paper, we develop a coherent
framework of topological phases of non-Hermitian systems. After elucidating the physical meaning and the
mathematical definition of non-Hermitian topological phases, we start with one-dimensional lattices, which
exhibit topological phases with no Hermitian counterparts and are found to be characterized by an integer
topological winding number even with no symmetry constraint, reminiscent of the quantum-Hall insulator
in Hermitian systems. A system with a nonzero winding number, which is experimentally measurable from
the wave-packet dynamics, is shown to be robust against disorder, a phenomenon observed in the Hatano-
Nelson model with asymmetric hopping amplitudes. We also unveil a novel bulk-edge correspondence that
features an infinite number of (quasi)edge modes. We then apply the K theory to systematically classify
all the non-Hermitian topological phases in the Altland-Zirnbauer (AZ) classes in all dimensions.
The obtained periodic table unifies time-reversal and particle-hole symmetries, leading to highly
nontrivial predictions such as the absence of non-Hermitian topological phases in two dimensions. We
provide concrete examples for all the nontrivial non-Hermitian AZ classes in zero and one dimensions. In
particular, we identify a Z2 topological index for arbitrary quantum channels (completely positive trace-
preserving maps). Our work lays the cornerstone for a unified understanding of the role of topology in non-
Hermitian systems.
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I. INTRODUCTION

Topological phases ofmatter [1–5] have attracted growing
interest over the past decade in many subfields of physics,
including condensed-matter physics [6–12], ultracold atomic
gases [13–21], quantum information [22–25], photonics
[26–35], and mechanics [36–39]. Topological phase tran-
sitions lie outside the Ginzburg-Landau-Wilson paradigm
of spontaneous symmetry breaking [40], can occur in

noninteracting systems, and may require the existence of
certain symmetries [41]. Systematic classifications have
been achieved for such symmetry-protected-topological
(SPT) phases, ranging from the Altland-Zirnbauer (AZ)
classes [42–46] to crystalline insulators and superconductors
[47–53]. TheseSPT states ofmatter exhibit robust edge states
(gapless or zeromodes) localized at open boundaries [54,55]
and novel entanglement spectra for subsystems [56]. The
gappedbulkSPTphases are characterizedbyhighly nonlocal
topological indices, which can give rise to quantized trans-
port phenomena immune to disorder [57]. More recently,
the notion of SPT phases has been generalized from equi-
librium to periodically driven (Floquet) systems [58–61],
which accommodate new topological phases with no static
counterparts [62–64].
In recent years, considerable effort has been devoted

to explore topological phases in non-Hermitian systems
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[65–73], which are open and out of equilibrium. This
burgeoning research arena is largely driven by the exper-
imental progress on atomic, optical, and optomechanical
systems [74–82], where gain and loss can be introduced
in a controllable manner. Controlled dissipation can
be harnessed to engineer an effective non-Hermitian
Hamiltonian H ≠ H†, represented by parity-time (PT)-
symmetric systems [83–89], which feature real spectra in
the PT-unbroken phases [90,91]. Unlike Hermitian sys-
tems, the eigenvalues of H are generally complex, and its
right eigenstates need not be orthogonal to each other and
are not equivalent to the left eigenstates, in general.
Furthermore, the right eigenstates can coalesce and become
orthogonal to the corresponding left ones at an exceptional
point [92], where H cannot be diagonalized. Previous
works have mostly focused on topological properties
associated with the exceptional point. Some unique topo-
logical objects with no Hermitian counterparts are identi-
fied, such as anomalous edge modes characterized by
half-integers [70] and Weyl exceptional rings with both
the quantized Chern number and the quantized Berry
phase [72]. Non-Hermitian systems emerge ubiquitously in
a variety of situations including open quantum systems
[93–100], mesoscopic physics [101–103], biological phys-
ics [104–106], and chemistry [107–109], where topology
can play important roles [94,99,106,107].
Nevertheless, a systematic understanding of topological

phases of non-Hermitian systems is still elusive. Inspired
by the periodic table for Hermitian topological insulators
and superconductors [43–45], we are naturally led to the
following questions:

(i) Can we classify non-Hermitian systems in analogy
with the SPT phases in closed quantum systems?

(ii) If yes, then what are the non-Hermitian counterparts
of AZ classes?

(iii) Is there a quantum-Hall-like non-Hermitian
system which has no symmetry yet is topologically
nontrivial?

(iv) Is there a bulk-edge correspondence in non-
Hermitian systems?

Regarding these fundamental questions, it seems that
exceptional points, while unique to non-Hermitian systems
and of great experimental importance, may not be a good
starting point for a systematic classification, since they
imply band touching in the bulk and seem incompatible
with a non-Hermitian generalization of the gap. We note
that two very recent works [110,111] have made an effort to
build a general framework following the methodology for
gapped Hermitian systems. In particular, Ref. [110] focuses
on one-dimensional lattices with on-site loss and no dark
states and identifies a topological winding number relevant
to particle displacement; Ref. [111] mainly discusses two-
dimensional non-Hermitian lattices with separable bands in
the complex-energy plane and identifies a Chern number
for individual bands. However, these results are rather

specific in spatial dimensions and/or the structure of the
Hamiltonian.
Here, we present a systematic framework for studying

the topological phases of generic non-Hermitian systems.
For the sake of comparison with SPT phases in Hermitian
systems, we focus primarily on lattice systems described
by non-Hermitian Bloch (or Bogoliubov–de Gennes)
Hamiltonians HðkÞ, but our formalism can also be applied
to other setups like quantum channels [112] and full
counting statistics [107], where non-Hermiticity appears
in completely positive trace-preserving (CPTP) superoper-
ators and generators for characteristic functions, respec-
tively. We discuss the Z2 topological index for arbitrary
quantum channels in Sec. VA 2. Our framework is based
on two guiding principles:

(I) Topological phases of non-Hermitian systems can be
understood as dynamical phases, where not only the
eigenstates but also the full complex spectra should
be taken into account.

(II) The non-Hermitian generalization of the concept of
the band gap is the prohibition of touching a base
energy, which is typically zero but generally complex,
in the spectrum.

We show that (I) and (II) are well justified both
physically and mathematically. On the basis of these two
guiding principles, we find that a one-dimensional lattice
with asymmetric hopping amplitudes turns out to be the
most prototypical example comparable to the quantum-Hall
insulator, in the sense that an integer topological number
can be defined without any symmetry protection. This
result gives an interesting topological interpretation to the
emergent Anderson transition [113] in the Hatano-Nelson
model [114–116], which should otherwise be absent in
one-dimensional Hermitian systems [117]. We also unveil a
bulk-edge correspondence which is qualitatively different
from the Hermitian case: There is a continuum of (quasi)
edge modes in the semi-infinite space (open chain), with
the winding number being the degeneracy at a given base
energy. These findings answer the last two questions
(iii) and (iv) raised in the previous paragraph.
Our guiding principles also enable a systematic appli-

cation of the K theory [118], a technique widely used in
classifying Hermitian topological systems [44,46,51], to
the non-Hermitian AZ classes, leading to a complete
classification in all spatial dimensions. We introduce a
unitarization procedure as a non-Hermitian generalization
of band flattening, followed by a Hermitianization pro-
cedure to represent the classifying space as a Clifford-
algebra extension [61]. The classification problem turns out
to be mathematically equivalent to that of the Hermitian AZ
classes with an additional chiral symmetry, leading to a
dramatically different periodic table as shown in Table I.
We identify the underlying topological numbers implied by
the K-theory classification for all the non-Hermitian AZ
classes in one dimension. We also unveil a Z2 topological
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index for zero-dimensional (anti-)PT-symmetric systems
and quantum channels. These results answer the first two
questions (i) and (ii) raised above and can further be
generalized to, e.g., systems with crystalline symmetries
and especially to PT-symmetric systems.
The remainder of the paper is organized as follows. In

Sec. II, we introduce the dynamical point of view regarding
topological phases and justify the guiding principle (I). In
Sec. III, we first justify the guiding principle (II) and then
discuss the topological properties of non-Hermitian lattices
in one dimension, including the definition of the winding
number, edge physics, and experimentally observable sig-
natures. In Sec. IV, we employ the K theory to achieve a
complete classification of non-Hermitian AZ classes in all
dimensions, as shown in Table I. The identification of
topological numbers and some topologically nontrivial
examples in zero and one dimensions are given in Sec. V.
We conclude the paper with an outlook in Sec. VI. Several
technical details and an experimental implementation on
asymmetric hopping are relegated to Appendixes to avoid
digressing from the main subjects.

II. DYNAMICAL VIEWPOINT ON THE
TOPOLOGICAL PHASES

We begin by discussing how to define topological
phases. In a Hermitian system, a topological phase can
be analyzed from the many-body ground-state wave func-
tion jΨi, which can be mapped through the projector

P− ¼
X
Ej<EF

jφjihφjj ð1Þ

onto all the single-particle eigenstates jφji ¼ f†j jvaci
below the Fermi energy EF for free fermions with
jΨi ¼ ðQEj<EF

f†jÞjvaci. Note that the spectrum plays no
role here, since the Hamiltonian H can be flattened by
means of the projector (1) into 1 − 2P− [43–45] without
closing the (band or many-body) energy gap, as schemati-
cally illustrated in Fig. 1(a). Two gapped Hamiltonians H
and H0 differ topologically if and only if jΨi (P−) cannot
continuously be deformed into jΨ0i (P0

−) under the

constraint of the energy gap and certain symmetries.
Such a topological distinction between wave functions
accords with the “states-of-matter" interpretation of phases.
However, the very notion of the ground state, be it single-

or many-body, breaks down for a non-Hermitian system,
since its eigenenergy belongs to the complex-number field
C, where, unlike the real-number field R, an order relation
cannot be defined [119]. Indeed, from a physical point of
view, non-Hermitian systems are intrinsically nonequili-
brium and even unstable. According to the nonunitary
Schrödinger equation

i∂tjψ ti ¼ Hjψ ti; ð2Þ

where H is non-Hermitian and the Planck constant is set
to unity throughout this paper, only the single-particle
eigenstate with the largest imaginary energy survives in the
long-time limit, a phenomenon well known in photonics
experiments [88]. It thus cannot be justified to interpret

TABLE I. Periodic table for non-Hermitian Hamiltonians. The Altland-Zirnbauer tenfold classes [43–45] are grouped into six such
that classes A, DIII, and CI, classes AI and D, and classes AII and C are unified. The Bott periodicity of classifying space C1 (C1 × C1) is
2, and that ofRs (Rs ×Rs, s ¼ 1, 5) is 8. Note that all the classes are nontrivial (trivial) in d ¼ 4nþ 1 (d ¼ 4nþ 2) dimensions, where
n ¼ 0; 1; 2;….

AZ class Classifying space d ¼ 0 1 2 3 4 5 6 7

A, DIII, CI C1 0 Z 0 Z 0 Z 0 Z
AIII C1 × C1 0 Z ⊕ Z 0 Z ⊕ Z 0 Z ⊕ Z 0 Z ⊕ Z
AI, D R1 Z2 Z 0 0 0 2Z 0 Z2

BDI R1 ×R1 Z2 ⊕ Z2 Z ⊕ Z 0 0 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2

AII, C R5 0 2Z 0 Z2 Z2 Z 0 0
CII R5 ×R5 0 2Z ⊕ 2Z 0 Z2 ⊕ Z2 Z2 ⊕ Z2 Z ⊕ Z 0 0

(b)

(a)

FIG. 1. (a) Energy spectrum (thick lines and dots) of a
Hermitian insulator. We can always perform band flattening,
i.e., continuously deform the spectrum into fE−; Eþg with
E− < EF < Eþ, where EF (red dot) is the Fermi energy. In
particular, we can choose E� ¼ �1 for EF ¼ 0. (b) Energy
spectrum of a non-Hermitian system forming a loop that encircles
a base point EB ∈ C. (In the figure, we set EB ¼ 0 for simplicity.)
While the shape can be deformed continuously, the loop can
never shrink to a single point without crossing the base point.
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non-Hermitian topological phases simply as topological
states of matter.
In this paper, we show that the topological phases of non-

Hermitian systems can be understood as topological
dynamical phases, for which not only the eigenstates but
also the full complex spectra play important roles. In fact,
such a dynamical perspective has widely been adopted in
the context of thermalization and many-body localization
[120], as well as Floquet systems [121]. Examples include
the Wigner-Dyson (Poisson) level-spacing statistics in
chaotic (integrable) systems [122] and quasienergy pairing
in discrete time crystals [123–125]. As for non-Hermitian
systems, we can immediately identify a unique topological
object arising solely from the complex spectrum—a loop
constituted from eigenvalues that encircles a prescribed
base point [see Fig. 1(b)]. Here, by unique, we mean that
the topological object discussed here never occurs in a
Hermitian system with a real spectrum; by topological, we
mean that the loop can never be removed without crossing
the base point at E ¼ EB. If the base point is chosen to be
zero, a loop ensures the existence of amplifying (ImE > 0)
and attenuating (ImE < 0) modes. Such a topologically
enforced dynamical instability (dynamical property) can be
compared to topologically protected edge states (state
property) in Hermitian systems. Note that the converse
is not true, since instability or edge modes may not have a
topological origin.
While only the complex spectrum is relevant in the

above example, in general, however, both states and the
spectrum are important in the complicated transient dynam-
ics governed by Eq. (2). Since the full information of
dynamical behavior is encoded in the non-Hermitian
Hamiltonian H in Eq. (2), we can generally define that
two non-Hermitian systems differ topologically if and only
if their Hamiltonians cannot continuously be deformed into
each other under certain constraints. Here, the minimal
constraint follows guiding principle (II), which is justified
in the next section.
Remarkably, by imposing the constraints of Hermiticity

and a finite gap, we can reproduce the states-of-matter
interpretation in Hermitian systems, at least for noninter-
acting SPT phases. Without the loss of generality [126],
assuming that EF ¼ 0 lies in the band gap, the real
spectrum can always be trivialized into �1, leaving the
only difference arising from P− given in Eq. (1). In this
sense, the dynamical viewpoint on topological phases is a
generalization of the static one.
We mention that Eq. (2) should not necessarily be

interpreted as a nonunitary equation of motion for a wave
function. Indeed, it can be any linear dynamics, such as a
classical Markovian process, where jψ ti is a probability
distribution [127], or a quantum master equation, where
jψ ti is a density operator or a supervector in the Liouville
space [128]. In some cases, we may consider a discrete
version of Eq. (2):

jψ tþTi ¼ UT jψ ti; ð3Þ

which can be any linear stroboscopic dynamics or even a
single input-output process, such as nonunitary quantum
walk [87,129] or quantum channels [112]. A recent work
[130] on classifying Gaussian nonequilibrium steady states
ρss can be regarded as a specific case of Eq. (3) with
U∞ðρÞ ¼ ρss for all ρ, where U∞ ¼ limt→∞eLt and ρss is
the unique (under the periodic-boundary condition) kernel
of a quadratic Lindbladian L with a finite damping gap.

III. TOPOLOGICAL NON-HERMITIAN LATTICES
IN ONE DIMENSION WITH NO SYMMETRY

Before performing a general classification, it is
instructive to start from the most illustrative case—one-
dimensional lattices without any symmetry requirements.
These systems are found to be classified by a topological
winding number, provided that a base energy EB is not
involved in the energy spectrum. We show that such a
winding number corresponds to the number of edge states
at EB in a semi-infinite space and is measurable from the
wave-packet dynamics.

A. Topological winding number

Let us first clarify the allowed continuous deformation.
Note that all the matrices M can continuously be deformed
to 0 via the path Mλ ¼ ð1 − λÞM, λ ∈ ½0; 1� if there is no
constraint. To avoid the case in which all non-Hermitian
systems in all dimensions are trivial, we must impose at
least one constraint. In the Hermitian case, such a constraint
is the existence of an energy gap near the Fermi energy EF,
which is equivalent to the condition that EF does not belong
to the energy spectrum of the Hamiltonian. As a possible
generalization to the non-Hermitian case, we impose the
condition that a base energy EB ∈ C does not belong to
the energy spectrum of HðkÞ for all k ∈ ½−π; π�, where k is
the wave vector. In analogy with the Hermitian case where
EF is typically set to be zero, we assume without the loss of
generality EB ¼ 0 such that HðkÞ ∈ GLðVÞ, where GLðVÞ
is the general linear group on the Hilbert space V at a given
wave vector k. Such a minimal constraint is not only natural
from a mathematical viewpoint but also physically reason-
able, since breaking the invertibility of a Hamiltonian
usually requires fine-tuning of parameters. In other words,
the constraint should easily be satisfied under random
perturbations, as is typically the case with experimental
imperfection. Indeed, as detailed from now on, our setup
does bring fruitful physical insights into non-Hermitian
systems.
Mathematically, our minimal constraint reads

detHðkÞ ≠ 0; for all k ∈ ½−π; π�; ð4Þ

which allows one to define a topological winding number:
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w≡
Z

π

−π

dk
2πi

∂k ln detHðkÞ: ð5Þ

We note that a generalization to the case of EB ≠ 0 can be
achieved by simply replacing HðkÞ by HðkÞ − EB in
Eqs. (4) and (5). Let E1ðkÞ; E2ðkÞ;…; ENðkÞ ∈ C=f0g
be the eigenenergies of HðkÞ, where N ¼ dimV is the
total number of bands. Then, the winding number (5) can
be expressed as

w ¼
XN
n¼1

Z
π

−π

dk
2π

∂k argEnðkÞ; ð6Þ

where argEnðkÞ is the argument of the complex energy
EnðkÞ. Note that w vanishes identically for Hermitian
Hamiltonians, because the real energy spectrum implies
ArgEnðkÞ ¼ 0, π, where Arg denotes the principle value of
the argument belonging to ½0; 2πÞ. In this sense, a nontrivial
winding number, which gives the number of times the
complex eigenenergies encircle EB, is unique to non-
Hermitian systems. Mathematically, the existence of this
winding number is ensured by the fact that the fundamental
group of GLðVÞ is isomorphic to Z. In the next section, we
show that the K-theory approach also gives the same Z
classification for one-dimensional systems belonging to
class A, which imposes no symmetries. In contrast, class A
is trivial in one-dimensional Hermitian systems [43].
As a minimal setup to observe a topological phase

transition, we consider a ring geometry with asymmetric
hopping amplitudes JR, JL ∈ C [see Fig. 2(a)]:

H ¼
X
j

ðJRc†jþ1cj þ JLc
†
jcjþ1Þ: ð7Þ

Fourier transforming Eq. (7) to moment space, we obtain
the Bloch Hamiltonian as

HðkÞ ¼ JRe−ik þ JLeik; ð8Þ

whose winding number is evaluated to give

w ¼
�
1 jJRj < jJLj;
−1 jJRj > jJLj:

ð9Þ

The topological phase-transition point thus locates
at jJRj ¼ jJLj [see Fig. 2(b)], where HðkÞ ¼ 0 for k ¼
½argðJR=JLÞ � π�=2 and thus HðkÞ is not invertible.
Note that Eq. (8) becomes HðkÞ ¼ e−ik for the specific

choice of JR ¼ 1 and JL ¼ 0. In this case, the non-
Hermitian Hamiltonian becomes unitary. If we regard
HðkÞ as the Floquet operator UFðkÞ, we obtain a
Thouless pump [131], which is characterized by the
winding number proposed in Ref. [62]:

w ¼
Z

π

−π

dk
2πi

Tr½U−1
F ðkÞ∂kUFðkÞ�: ð10Þ

In fact, Eq. (10) reduces to Eq. (5) if we replace UFðkÞ by
HðkÞ (see Appendix A). The formal similarity and the
essential difference between non-Hermitian Hamiltonians
and Floquet operators is clarified in the next section.
Remarkably, without symmetry constraints, non-

Hermitian systems can support topological phases and
transitions even for a single-band lattice like Eq. (7).
Indeed, we can easily write down a single-band Bloch
Hamiltonian HðkÞ ¼ eink, which corresponds to an jnj-site
(leftward when n > 0 and rightward when n < 0) unidi-
rectional hopping and features an arbitrary winding number
n ∈ Z. This result makes a sharp contrast with Hermitian
systems, which require at least two bands for observing
topological phenomena [132], either with (in one dimen-
sion) or without (in two dimensions) additional symmetries.
Such a sharp distinction can be understood as follows:
According toEq. (6), thewinding numbers in non-Hermitian
systems are determined solely from complex energies. On
the other hand, winding numbers (or Chern numbers) in
Hermitian systems are usually related to the Berry phase,
which automatically becomes trivial if there is only a single
band. We return to these crucial points in Sec. III D.

B. Robustness against disorder—Revisiting
the Hatano-Nelson model

So far, we have focused on the case with translation
invariance and used the Bloch Hamiltonian. For Hermitian

(a)

(b)

FIG. 2. (a) One-dimensional lattice with asymmetric hopping
amplitudes JL ≠ J�R. Here, we show the case in which jJLj >
jJRj, as indicated by the thickness of the arrows. (b) Phase
diagram and typical complex-energy spectra for the model in (a),
where w is the winding number. A topological phase transition
occurs at jJLj ¼ jJRj (purple dot), where the spectrum touches
the origin, while the specific case of (a) (blue star) belongs to
the w ¼ 1 phase, where the energy spectrum forms a loop
encircling the origin. An arrow inside each loop indicates the
direction of increasing k which corresponds to the sign of the
winding number w.
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systems belonging to class A, we know that the integer
quantum-Hall states in two dimensions are robust against
spatial disorder. As a consequence, while the Anderson
transition is forbidden in two dimensions [117] in the
absence of spin-orbit interactions [133], mobility edges
emerge in an integer quantum-Hall state and the deloca-
lized modes contribute to the quantized Hall conductivity
Ce2=h [134], with C being the Chern number [1]. These
well-established results naturally raise a question of
whether or not a topological non-Hermitian system like
Eq. (7) is robust against disorder and, if yes, in what sense.
To address this question, we consider the following

modification of Eq. (7):

H ¼
X
j

ðJRc†jþ1cj þ JLc
†
jcjþ1 þ Vjc

†
jcjÞ; ð11Þ

which describes a one-dimensional ring with asymmetric
hopping amplitudes and on-site disorder Vj. This model
is a well-studied model proposed by Hatano and Nelson
[114–116]. While a one-dimensional Hermitian system is
always localized in the presence of a random potential
[117], e.g., Vj ∈ ½−W;W� with a uniform probability, the
Hatano-Nelson model (11) exhibits an Anderson transition
[113]. Recalling the emergence of mobility edges in the
quantum-Hall state, we conjecture that the Anderson
transition is ensured by the nontrivial topological winding
number, which is expected to be trivial [135] if the system
is fully localized.
To verify the conjecture, we have to first generalize the

definition of the winding number to disordered systems.
Following the idea of defining the Chern number for
disordered quantum-Hall states [57], we apply a magnetic
flux Φ through a finite non-Hermitian ring with length L
such that the hopping amplitudes are multiplied by e∓iΦ=L

under a specific choice of gauge. For the Hatano-Nelson
model (11), we have

HðΦÞ¼
XL
j¼1

ðJRe−iðΦ=LÞc†jþ1cjþJLeiðΦ=LÞc†jcjþ1þVjc
†
jcjÞ:

ð12Þ

While HðΦÞ is not periodic in Φ, there exists a large-gauge

transformation ULG ¼ e2πi=L
P

j
jc†j cj such that

HðΦþ 2πÞ ¼ ULGHðΦÞU†
LG: ð13Þ

Therefore, the gauge-independent quantity detHðΦÞ is
periodic in Φ, and the winding number can be defined as

w≡
Z

2π

0

dΦ
2πi

∂Φ ln detHðΦÞ: ð14Þ

We can show that Eq. (14) reproduces Eq. (5) in the
presence of translation invariance (see Appendix A).
In general, w counts the number of times the complex
spectral trajectory encircles the base point EB ¼ 0when the
flux is increased from 0 to 2π. Having in mind that a time-
varying flux induces an electric field, we expect that both
the eigenenergy and the wave function of a localized mode
stay almost unchanged when changing Φ. Accordingly, the
winding number should vanish if the system is fully
localized (see Appendix B 1 for details).
We perform an exact-diagonalization analysis of a

Hatano-Nelson model with L ¼ 103, JR ¼ 2, and JL ¼ 1
subject to the periodic-boundary condition. We present
the numerical results in Fig. 3 for four different dis-
order strengthsW ¼ 1, 3, 4, 5. AsW increases, the fraction
of localized modes [indicated by the points located on
the real axis in Fig. 3(a)] increases, and the mobility edges
(points encircling the origin) shrink to the origin.
Nevertheless, even if the fraction of delocalized modes
is small, the winding number (14) is always quantized at
w ¼ −1. Moreover, arg detHðΦÞ is approximately given
by π −Φ, as can be seen from the following explicit
expression:

(a) (b) (c) (d)

FIG. 3. (a) Complex-energy spectra and (b) flows of ArgðdetHÞ with respect to the flux Φ for typical realizations of the Hatano-
Nelson Hamiltonian (11) with L ¼ 103, JR ¼ 2, JL ¼ 1, and real on-site disorder Vj ∈ ½−W;W�, where W ¼ 1, 3, 4, 5. (c) and
(d) correspond to (a) and (b), respectively, with the same set of parameters except for the inclusion of a complex on-site disorder
Vj ¼ jVjjeiϕj , where jVjj ∈ ½0;W� with W ¼ 2, 3, 3.5, 4 and ϕj ∈ ½0; 2π�. Note that the flows of ArgðdetHÞ almost overlap in (b) for
W ¼ 1, 3, 4 and in (d) forW ¼ 2, 3, 3.5 and that they also overlap with each other between (b) and (d). We see that the transition occurs
betweenW ¼ 4 andW ¼ 5 in (a) and betweenW ¼ 3.5 andW ¼ 4 in (c). In the nontrivial phase [W ¼ 1, 3, 4 in (a) andW ¼ 2, 3, 3.5
in (c)], the spectra encircle the base point at E ¼ 0, giving the winding number w ¼ −1. In the trivial phase, the data points lie on the real
axis in (a) and scatter in the complex-energy plane without forming a closed loop in (c).
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detHðΦÞ ¼ ð−ÞL−1ðJLRe−iΦ þ JLLe
iΦÞ þ PðfVjgÞ; ð15Þ

where an overwhelming majority of the random magni-
tudes of the polynomial PðfVjgÞ (see Appendix B 2 for the
detailed expression), which are independent of Φ, should
be much smaller than JLR before localization. With further
increasing the disorder strength, an Anderson transition
occurs at Wc ≃ 4.3, and all the states become localized,
leading to a trivial topological number.
In fact, the real parameters used in numerical calcula-

tions endow the Hatano-Nelson model with time-reversal
symmetry T ¼ K (K is the complex conjugate), which
makes the spectra symmetric under reflection with respect
to the real axis [see Fig. 3(a)]. To demonstrate that the time-
reversal symmetry is irrelevant to the winding number
discussed here, we also calculate the energy spectra for
complex random potentials Vj ¼ jVjjeiϕj , where the mag-
nitude jVjj (phase ϕj) is randomly sampled from a uniform
distribution over ½0;W� (½0; 2π�). Then, the symmetry with
respect to the real axis is lost; yet, for disorder strength
W ¼ 2, 3 and 3.5, we still find that the complex spectrum
encircles the origin [see Fig. 3(c)], as listed in a nontrivial
winding number w ¼ −1 [see Fig. 3(d)]. When the disorder
is too strong (the critical value is about Wc ≃ 3.9), e.g.,
for W ¼ 4, the winding number becomes zero. Note that
ArgðdetHÞ in Fig. 3(d) for W ¼ 4 does not take on special
values like 0 or π, unlike the Hermitian case. This differ-
ence arises from the fact that the constant term PðfVjgÞ in
Eq. (15) now becomes complex due to Vj ∈ C.
It should be mentioned that, while the topological

transition and the localization transition coincide in the
above two models, this may not be the case for other forms
of disorder (see Appendix B 3). On the other hand, one may
conjecture that the system is fully localized if and only if
the winding number with respect to an arbitrary base energy
vanishes, provided that the eigenvalues of robust delocal-
ized modes always form some loops. That is to say, a
topological transition is certainly not sufficient but prob-
ably necessary for a localization transition.
While both the Hatano-Nelson model and the quantum-

Hall insulator are topologically nontrivial with no sym-
metry requirement, we mention two crucial differences.
First, due to the difference in spatial dimensions, the former
is characterized by a winding number, while the latter is
characterized by a Chern number. Second, as indicated by
Table I, the topological winding number of the Hatano-
Nelson model survives if the time-reversal symmetry is
imposed. In stark contrast, a quantum-Hall insulator (or
Chern insulator) necessarily breaks the time-reversal
symmetry.

C. Bulk-edge correspondence

As is well known in Hermitian systems, a nontrivial
topological number in the bulk usually implies the

existence of edge states, such as chiral edge modes in a
quantum (anomalous) Hall state with open boundaries [54].
It is thus natural to ask whether the bulk-edge correspon-
dence exists in topological non-Hermitian systems. We
answer this question in the affirmative, at least for the
single-band case. However, the correspondence turns out to
be very different from that in Hermitian systems—given a
base energy EB, a positive (negative) winding number
w implies w (−w) independent edge modes with energy
E ¼ EB and localized at the left (right) boundary in the
semi-infinite space.
Let us first focus on the minimal model described by

Eq. (7). By assuming jJLj > jJRj, we expect an edge state
at the left boundary. Indeed, in the limiting case of JR ¼ 0,
ψ j ¼ δj;1 (localized at the first site) is an eigenstate with
zero energy. More generally, by imposing the right-half-
infinite boundary condition, a state localized at the left
boundary can be obtained by solving

JRψ j−1 þ JLψ jþ1 ¼ Eψ j; j ¼ 1; 2;… ð16Þ

subject to

ψ0 ¼ 0; lim
j→∞

ψ j ¼ 0: ð17Þ

This is a standard problem on a recursive sequence.
Denoting z1 and z2 as the roots of

E ¼ JRz−1 þ JLz; ð18Þ

which is the characteristic equation of Eq. (16), the general
form of the wave function can be written as [136]

ψ j ¼ c1z
j
1 þ c2z

j
2: ð19Þ

Accordingly, the conditions in Eq. (17) become

c1 þ c2 ¼ 0; jz1j < 1; jz2j < 1: ð20Þ

These conditions lead to a continuum of solutions ψ j ∝
zj1 − zj2 with energies that fill the interior of the bulk energy
spectrum—a closed loop [see Fig. 4(a)] specified by Eq. (8)
or Eq. (18) with jzj ¼ jeikj ¼ 1. Note that the winding
number is 1 for any base energy within this loop, including
EB ¼ 0.
With the above concrete example in mind, we are ready

to generalize the conclusion to arbitrary single bands with
positive winding numbers. While the full proof is some-
what technical (see Appendix C), the key idea is simply the
argument principle [119]

I
jzj¼1

dz
2πi

f0ðzÞ
fðzÞ ¼ Z − P; ð21Þ
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where E ¼ fðzÞ is the characteristic equation and Z (P)
denotes the number of zeros (poles) of fðzÞ in the area
jzj < 1. Replacing z with eik, we find that the left-hand side
of Eq. (21) gives nothing but the winding number w
introduced in Eq. (6). A general form of the wave function
can be written as ψ j ¼

P
Z
l¼1 clz

j
l , where zl’s are the zeros

and cl’s are subject to P different constraints stemming
from the inhomogeneity at the edge. These are straightfor-
ward generalizations of Eqs. (19) and (20). As a result,
there are Z − P ¼ w-fold degeneracies of edge states at
E ¼ 0 or generally at E ¼ EB if we replace fðzÞ with
fðzÞ − EB in Eq. (21). Note that the same analysis applies
to single bands with negative winding numbers by inter-
changing z and z−1.
In a realistic one-dimensional system, such as a photonic

lattice [88], open boundaries always appear in pairs. In the
presence of two edges, only a one-dimensional part is
picked out from the edge-state continuum, making the
topological degeneracy generally invisible for a given base
energy. For example, the spectrum of an open chain
described by Eq. (7) with length L can be determined as
En ¼ 2

ffiffiffiffiffiffiffiffiffiffi
JLJR

p
cos½ðnπÞ=ðLþ 1Þ� (n ¼ 1; 2;…; L), which

distributes over an interval ð−2 ffiffiffiffiffiffiffiffiffiffi
JLJR

p
; 2

ffiffiffiffiffiffiffiffiffiffi
JLJR

p Þ on the
real-energy axis in the thermodynamic limit [see the red

line in Fig. 4(a)]. A sudden change in the spectrum under
different boundary conditions has also been found in
Ref. [137]. Here, we can provide a topological under-
standing—the winding number (14) should either vanish or
become ill defined in an open chain, since the flux can
always be gauged out and, thus, detHðΦÞ is Φ indepen-
dent. Therefore, the spectrum no longer encircles any base
point inside the spectrum loop under the periodic-boundary
condition. Since the spectrum should change continuously
when the boundary hopping is gradually switched on, the
spectrum must be very sensitive to the boundary condition.
Indeed, it is already shown in Ref. [137] that an exponen-
tially smallmodification of the boundary condition can lead
to an order-one change in the spectrum.
As stated above, an energy eigenstate localized at the

edge of a semi-infinite space generally disappears if the
system size is finite. Nevertheless, quasiedge modes may
exist for finite-size systems. By quasiedge modes, we mean
that they are not genuine eigenstates, yet their dynamics
look just like eigenstates up to a timescale that increases
with the system size and diverges in the thermodynamic
limit. To investigate them, suppose that an edge state with
energy E for the semi-infinite condition is prepared in a
finite lattice with length L, whose spectrum does not
include E. Then, the time evolution can be obtained to a

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 4. (a) Energy spectrum of Eq. (7) with JL ¼ 2 and JR ¼ 1 under the periodic-boundary condition (PBC, blue ellipse) and the
open-boundary condition (OBC, red line). For each energy E inside the ellipse (light-blue region), there exists a w ¼ 1 edge state
localized at the left boundary in the semi-infinite space. Three colored points show energies of the three quasiedge modes in (d). (b) An
edge state in the semi-infinite space (magenta wave packet) eventually becomes unstable (orange wave packet) in a finite open chain
with length L after a time t� ∼ ðL=vÞ, where v is the Lieb-Robinson velocity. (c) Time evolution of the relative deviation RðtÞ≡
k½e−iðH−EÞt − 1�jψik for the edge state jψiwith E ¼ 0.1i in an open chain with L ¼ 100. Inset: Time evolution (solid curves) of jψ jðtÞj2
at the leftmost three sites (j ¼ 1, 2, 3) in comparison with that of jψ jðtÞj2 ¼ e2ImEtjψ jð0Þj2 (dashed lines). (d) Finite-size scaling of t� for
three different quasiedge states with energies E ¼ 0.1i, 2.85 and 0.5 − 0.5i [marked in (a)]. We define t� by Rðt�Þ ¼ 10−2, as indicated
by the dashed red line in (c). (e) The same as (c) but in the presence of real on-site disorder Vj ∈ ½−W;W�withW ¼ 3. The green curves
and the inset show three typical realizations, and the dashed purple curve gives the disorder average over 103 realizations. The average is
taken for lnRðtÞ and, thus, gives the geometric mean for RðtÞ. (f) The same as (d) but for different disorder strengths W ¼ 3, 3.5, 3.7
[compared to W ¼ 0, the same as E ¼ 0.1i in (d)] with fixed E ¼ 0.1i.
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good approximation simply by multiplying e−iEt up to a
timescale (at least) proportional to L [see Figs. 4(c) and
4(d)]. Note that this quasieigenstate of a finite chain
becomes exact in the semi-infinite limit L → ∞. While a
formal proof is available (see Appendix D), we can
intuitively interpret this linear scaling as a manifestation
of the Lieb-Robinson bound [138] after a boundary-
condition quench roughlyL sites away from the edge mode,
as illustrated in Fig. 4(b). In the presence of disorder, these
quasiedge modes stay robust, although they are irregularly
modified depending on the disorder configuration. As for
on-site disorder in Eq. (7), the wave function of a quasiedge
mode (if existing) at E can iteratively be determined by
ψ jþ1 ¼ ½ðE − VjÞψ j − JRψ j−1�=JL. The lifetime upon dis-
order average obeys the same linear scaling with respect to
(sufficiently large) L as the clean limit [see Fig. 4(f)].
The dramatic changes in the spectra for different boun-

dary conditions have already been investigated in a purely
mathematical context regarding non-Hermitian Toeplitz
matrices (i.e., the matrices satisfying Mjl ¼ Mj−l) and
operators [139]. A generalization of the conventi-
onal eigenvalues and eigenvectors, which is called the ϵ-
pseudoeigenvalues and eigenvectors, was made to explain
the apparent inconsistency. The exact definition is as
follows: Given a matrix or operator H, if there exists V
such that the operator norm satisfies kVk ≤ ϵ and
ðH þ VÞψ ¼ Eψ , then E and ψ constitute a pair of
ϵ-pseudoeigenvalue and eigenvector of H. In our language,
Toeplitz matrices and operators correspond to finite and
semi-infinite chains, respectively, and a pseudoeigenvector
is nothing but a quasiedge mode. The spectrum of a
Toeplitz operator must be obtained by first taking the
thermodynamic limit L → ∞ followed by ϵ → 0, which is
generally inequivalent to the limit ϵ → 0 followed by
L → ∞ [139]. This fact is reminiscent of quantum phase
transitions [40], where spontaneous symmetry breaking
occurs only by first taking the thermodynamic limit and
then making the symmetry-breaking perturbations vanish.
Here, the noncommutativity of the limiting procedures
stems from the topologically enforced sensitivity to the
boundary condition, as already explained previously.

D. Numerical and experimental schemes
to extract the winding number

In Hermitian systems, the only direct signature of w in
one dimension seems to be the number of edge states.
Because of the subtlety of the bulk-edge correspondence
discussed above, we can hardly identify w simply from the
energy spectrum of a finite non-Hermitian system.
Nevertheless, we can numerically extract the winding

number by counting the zero modes of the following
enlarged Hermitian Hamiltonian constructed from H:

HH ≡ σþ ⊗ H þ σ− ⊗ H†; ð22Þ

where σ� ≡ ðσx � iσyÞ=2, with σx and σy being the Pauli
matrices. Such an idea of Hermitianization (22) actually
lies at the heart of the K-theory classification discussed in
the next section. Using the bulk-edge correspondence ofH,
we can show that the number of zero modes of Eq. (22)
equals to 2jwj (see Appendix C). This result is actually
nothing but the bulk-edge correspondence for Hermitian
systems with chiral symmetry alone (class AIII). If the
chiral symmetry stems from the sublattice degrees of
freedom, the sign of w determines in which sublattice
the edge state is localized. Note that the generalization to
arbitrary base energies can be done through the replace-
ment of H by H − EB in Eq. (22).
In practice, we can measure the winding number from

the wave-packet dynamics. For Hermitian lattice systems,
the semiclassical equations of motion of a particle in a
single band are given by [140]

dk
dt

¼ F;
dr
dt

¼ ∇kEðkÞ −
dk
dt

×ΩðkÞ; ð23Þ

where F is the potential gradient, EðkÞ is the band
dispersion, and ΩðkÞ ¼ ih∇kuðkÞj × j∇kuðkÞi is the
Berry curvature, which requires at least two dimensions
and two bands (as mentioned in Sec. III A) to be nonzero.
In two dimensions, it suffices to determine the Chern
number directly from the transverse motion of particles
[16]. However, in a one-dimensional lattice, rather sophis-
ticated operations are needed to measure the winding
number or the Zak phase [14]. That is, we have to isolate
the geometric phase from the dynamical phase [141]. In a
non-Hermitian one-dimensional system, however, the
winding number (6) is determined solely from the eigene-
nergies, which are relevant to the dynamical phase. It turns
out that w can be measured simply from the nonunitary
Bloch oscillations [142,143], whose semiclassical equation
of motion is given by (see Appendix E)

dk
dt

¼F;
dx
dt

¼Re
dEðkÞ
dk

;
d lnN t

dt
¼2ImEðkÞ; ð24Þ

whereN t ≡ hψ tjψ ti is not, in general, equal to unity due to
the nonunitary nature of the dynamics. By simultaneously
tracing the center of mass and the total weight of the wave
packet, we can reconstruct the energy spectrum when the
wave vector runs over the Brillouin zone. The winding
number w can thus be determined by counting how many
times the complex-energy trajectory encircles a base point.
Such a simple scenario can be implemented in photonic
lattices [144] with asymmetric backscattering [79,80] or
by using auxiliary microresonators with gain and loss
[145,146]. Here, we propose another implementation based
on ultracold atoms in optical lattices with engineered
dissipation (see Appendix F for details). Comparing with
photonic lattices, ultracold atoms have the advantage in
controlling interactions flexibly and, thus, are promising for
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exploring non-Hermitian quantum many-body physics
[97,98].
As a simple example, we consider the wave-packet

dynamics in a disorder-free Hatano-Nelson lattice (7) with
JL ¼ 2, JR ¼ 1, and L ¼ 100. While the open-boundary
condition is imposed, we have checked that the difference
from the periodic-boundary condition is negligible. At the
initial time, we prepare a Gaussian packet in the middle of
the lattice with dispersion σr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=ð4πÞp

and located at
k ¼ 0 in the Brillouin zone [see Fig. 5(a)]. After applying a
potential gradient F ¼ 0.4 in the positive x (right) direc-
tion, both the center of mass and the intensity start to
oscillate. As shown in Fig. 5(c), the numerical results (dots)
agree quite well with the semiclassical predictions (dashed
curves). Thus, the reconstructed complex energies based on
Eq. (24) accurately reproduce those of the ideal dispersion
relation [see Fig. 5(d)]. We also plot the wave-packet
densities at several different times in Fig. 5(b) and confirm
that the profile stays approximately Gaussian during the
time evolution. Note that the initial direction of motion is
opposite to F due to the negative effective mass meff ¼
−ðJL þ JRÞ at k ¼ 0.

IV. CLASSIFICATION OF NON-HERMITIAN
TOPOLOGICAL PHASES IN THE
ALTLAND-ZIRNBAUER CLASSES

The non-Hermitian systems discussed in the previous
section are special in the sense that the spatial dimension is

d ¼ 1 and no symmetry requirement is imposed. Such a
non-Hermitian counterpart of class A in one dimension,
however, exhibits an integer topologicalwinding number (5)
reminiscent of Floquet systems [62] and Hermitian systems
belonging to class AIII [43]. These observations suggest a
connection between a non-Hermitian Hamiltonian and a
unitary operator, the latter of which has a one-to-one
correspondence to an involutory Hermitian Hamiltonian
with a prescribed chiral symmetry [61]. In this section, we
establish such a connection, which enables a systematic
classification of non-Hermitian Bloch Hamiltonians in all
dimensions and in the presence of additional symmetries.
In particular, we show that the topological classifications of
non-Hermitian AZ classes differ significantly from those of
Hermitian AZ classes [43–46].

A. Unitarization under symmetry constraints

In the previous sections, we have already clarified that
two Hamiltonians are topologically equivalent if they can
continuously be deformed into each other under certain
constraints. Without symmetries, the only constraint is that
a base point EB cannot be touched by the energy spectrum.
Such a constraint is imposed to satisfy the condition of
invertibility of the Hamiltonian for EB ¼ 0, which we
primarily assume in the following discussions. For a given
AZ class, we have to further impose symmetry constraints.
We define that H0ðkÞ and H1ðkÞ are homotopically
equivalent, denoted as H0ðkÞ ≃H1ðkÞ, if and only if there
exists a path HλðkÞ (0 ≤ λ ≤ 1) in the space of invertible
matrices [i.e., the GLðVÞ group, where V is the Hilbert
space] such that

AHλðkÞ ¼ ηAHλð−kÞA; for all λ ∈ ½0; 1�; ð25Þ

where A ¼ T (time-reversal operator) and C (particle-
hole operator) are antiunitary operators, with ηT ¼ 1
and ηC ¼ −1, respectively. We emphasize again that the
condition of HλðkÞ being invertible is equivalent to the
condition that the system stays gapped in the Hermitian
case, if we prescribe the Fermi energy to be 0. When
generalizing to non-Hermitian systems, the concepts of
upper and lower bands disappear, since we cannot establish
an order relation for complex energies.
From now on, we may omit the variable k for simplicity.

The definition of the homotopical equivalence based on
Eq. (25) implies the following theorem:
Theorem 1.—For an arbitrary invertible Hamiltonian H,

which has a unique polar decomposition H ¼ UP with U
being unitary and P ¼

ffiffiffiffiffiffiffiffiffiffi
H†H

p
being positive definite and

Hermitian, we have H ≃ U.
This theorem is proved in Appendix G and applicable

also to crystalline symmetries. We provide two examples
of unitarization from H to U in Fig. 6. According to this
theorem, it suffices to consider the classification of all the
unitary matrices. Note that this result is consistent with

(a) (b)

(c) (d)

FIG. 5. (a) Gaussian wave packet in a lattice with asymmetric
hopping amplitudes JL ¼ 2 and JR ¼ 1 and tilted by a potential
gradient F ¼ 0.4. (b) Profiles of the wave packet in real space at
t ¼ 0, 0.2T, 0.4T, 0.5T, 0.7T, and 0.9T, with T ¼ ½ð2πÞ=F� for
the lattice length L ¼ 100. (c) Numerical (“þ” marks) and
semiclassical [dashed curves, obtained from Eq. (24)] results
for the wave-packet dynamics in real space. Here, Δhxit ≡ hxit −
hxi0 denotes the center-of-mass displacement at time t. (d) Com-
plex eigenenergies reconstructed from (c) (dots) in comparison
with the theoretical results (dashed curve). The arrows in (b) and
(d) show the direction of time. Since the data are taken
stroboscopically, the imaginary energies ImE are estimated from
lnðhψ tþΔtjψ tþΔti=hψ tjψ tiÞ=ð2ΔtÞ.
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band flattening in the Hermitian case [43–45]. By diagonal-
izing a Hermitian Hamiltonian as

H ¼ V

�Λþ
p×p 0

0 Λ−
q×q

�
V†; ð26Þ

where Λþ
p×p (Λ−

q×q) is the diagonal block of all the positive
(negative) energies, we find the polar decomposition to be
H ¼ UP with

U ¼ V

�
1p×p 0

0 −1q×q

�
V†;

P ¼ V

�Λþ
p×p 0

0 −Λ−
q×q

�
V†; ð27Þ

where U is nothing but the flattened Hamiltonian.

B. K-theory and Clifford-algebra extension

The classification based on the homotopy equivalence is
appropriate for a given Hilbert space but is not so if the
operations of inserting extra bands are allowed. These
operations are indeed possible in experiments of ultracold
atoms, where we can, for example, couple two or more
individual one-dimensional chains [147]. In this case, the
correct classification should be carried out on the basis of
the K theory [44,46,50,51,148]; i.e., all we have to do is to
figure out the K group of the map from the Brillouin zone
M ¼ Td (d is the spatial dimension) to a matrix space
subject to specific symmetry requirements (but with no
Hermiticity constraints). If we are interested only in the
strong topological numbers [44], the manifold is M ¼ Sd.
It is worthwhile to sketch the basics of the K theory so as

to understand why it is compatible with band-inserting
operations. The K group is an Abelian group consisting of
equivalence classes, denoted as ½H0; H1�, of pairs of
Hamiltonians ðH0; H1Þ, where H0 and H1 act on the

same Hilbert space. For ðH0; H1Þ, we define an addition
structure as

ðH0; H1Þ þ ðH0
0; H

0
1Þ ¼ ðH0 ⊕ H0

0; H1 ⊕ H0
1Þ: ð28Þ

We also impose ðH0; H1Þ ¼ ðH0
0; H

0
1Þ if H0 ≃H0

0 and
H1 ≃H0

1. Here ≃ means the homotopy equivalence. To
specify the equivalence classes, we require that ðH0; H1Þ
should be identified as ðH0 ⊕ H;H1 ⊕ HÞ for all H, i.e.,
½H0 ⊕ H;H1 ⊕ H�≡ ½H0; H1�. By naturally defining the
addition between equivalence classes as

½H0; H1� þ ½H0
0; H

0
1� ¼ ½H0 ⊕ H0

0; H1 ⊕ H0
1�; ð29Þ

we can deduce that they form an Abelian group, which is
called theK group and denoted asKðMÞ, with zero element
½H;H� ¼ 0 and the inverse of ½H0; H1� being ½H1; H0�. We
say that H0 and H1 belong to the same topological phase if
and only if ½H0; H1� ¼ 0.
A crucial observation here is that, although H0 ≃H1

implies ½H0; H1� ¼ 0, the converse is not true. A proto-
typical example is the Hopf insulator [149], which is a two-
band system in three dimensions and has no symmetry.
While a Hopf insulator differs homotopically from a trivial
insulator by a nonzero Hopf charge, it is trivial in the
K-theory classification, since we can insert additional
bands into the system to trivialize the homotopy from S3

to the entire Hilbert space. In other words, nontrivial
topological phases emerge in class A in three dimensions
if the number of bands is restricted to two.
While it is generally difficult to calculate the K group,

well-developed techniques are available if the Hamiltonian
space subjected to specific symmetry constraints can be
represented as an extension of a Clifford algebra [44],
which is generated by a set of anticommutative elements
fejgnj¼1, i.e., ejej0 ¼ −ej0ej for all j ≠ j0. If e2j ¼ 1 for all
j ¼ 1; 2;…; n, the algebra generated by fejgnj¼1 over the
complex-number field C is called a complex Clifford
algebra Cln. If e2j ¼ −1 for j ¼ 1; 2;…; p (p ≤ n) and
e2j ¼ 1 for j ¼ pþ 1; pþ 2;…; n, the algebra generated
by fejgnj¼1 over the real-number field R is called a real
Clifford algebra Clp;q, where q ¼ n − p. For a flattened
Hermitian Hamiltonian H, we naturally have H2 ¼ 1,
which can already be regarded as an element of a
Clifford algebra ClH generated by H and its twofold
symmetry operators (as well as i, if there is an antiunitary
symmetry). Noting that the symmetry operators themselves
generate another Clifford algebra ClS, we can thus
represent the Hamiltonian space by the Clifford-algebra
extension ClS → ClH. In particular, we denote Cls →
Clsþ1 and Cl0;s → Cl0;sþ1 as Cs and Rs, respectively,
which satisfy Csþ2 ¼ Cs and Rsþ8 ¼ Rs. It is well known
for Hermitian systems that the two complex AZ classes
correspond to Cs with s ¼ 0, 1 and the eight real AZ classes

–2 –1 0 1 2

–2

–1

0

1

2

Re En

–2 –1 0 1 2
Re En

Im
E

n

(a)
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–1

0

1

2

Im
E

n

(b)

FIG. 6. (a) Spectral flow (from red to green, guided by the
arrows) in the course of the unitarization process of an invertible
complex matrix with size 20. Note that the spectrum of the
unitarized matrix locates on a unit circle (black dashed line).
(b) The same as in (a) but for a time-reversal-symmetric matrix.
The time-reversal symmetry, which manifests itself as the mirror
symmetry of the spectrum with respect to the real axis, is kept in
the unitarization process.
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correspond to Rs with s ¼ 0; 1;…; 7 [44]. Denoting the K
group for a complex or real AZ class parametrized by s and
in d dimensions as KCðs; dÞ or KRðs; dÞ, we have

KCðs; dÞ ¼ πdðCsÞ ¼ π0ðCs−dÞ;
KRðs; dÞ ¼ πdðRsÞ ¼ π0ðRs−dÞ; ð30Þ

where πd is the dth homotopy group.
For a unitarized non-Hermitian Hamiltonian U, we

do not have U2 ¼ �1, in general. Nevertheless, we can
introduce the corresponding Hermitian Hamiltonian

HU ≡ σþ ⊗ U þ σ− ⊗ U† ¼
�

0 U

U† 0

�
; ð31Þ

which now satisfies H2
U ¼ 1. Remarkably, by such a

construction, we naturally have a chiral symmetry Σ≡
σz ⊗ 1 which satisfies Σ2 ¼ 1 and

ΣHU ¼ −HUΣ: ð32Þ
It has been proved (see, e.g., Appendix D in Ref. [61]) that
HU must take the form of Eq. (31) if we impose Eq. (32).
Therefore, one can find properties of U from those of HU.

C. Explicit classification

Now let us study how the non-Hermiticity changes the
topological classification for each AZ class. We start from
the two complex AZ classes A and AIII, which correspond
to C0 and C1 in the Hermitian case. Because of the emergent
chiral symmetry (32), class A is shifted to class AIII, which
is characterized by πdðC1Þ ¼ Z (0) for odd (even) d. As
for class AIII with an intrinsic chiral symmetry Γ, due to
½Σ; σ0 ⊗ Γ� ¼ 0 (σ0 ≡ 12×2), the topological number sim-
ply duplicates; i.e., it becomes πdðC1 × C1Þ ¼ Z ⊕ Z (0)
for odd (even) d.
Let us move on to the real AZ classes with only a single

antiunitary symmetry A ¼ UAK, including AI (T2 ¼ 1), D
(C2 ¼ 1), AII (T2 ¼ −1), and C (C2 ¼ −1). By using the
fact that

AU ¼ ηAUA ⇔ AU† ¼ ηAU†A

⇔

�
A 0

0 A

��
0 U

U† 0

�
¼ ηA

�
0 U

U† 0

��
A 0

0 A

�
; ð33Þ

we find that the action of an antiunitary symmetry σ0 ⊗ A
on HU is the same as that on U. Since ½σ0 ⊗ A;Σ� ¼ 0,
such a chiral symmetry Σ implies another antiunitary
symmetry whose square is the same as A2. Therefore,
classes AI and D (classes AII and C), which correspond to
R0 and R2 (R4 and R6) in the Hermitian case, are unified
into BDI (CII) described by R1 (R5).
Finally, let us discuss the AZ classes with two antiunitary

symmetries, including DIII (T2 ¼ −1, C2 ¼ 1), CI
(T2 ¼ 1, C2 ¼ −1), BDI (T2 ¼ 1, C2 ¼ 1), and CII

(T2 ¼ −1, C2 ¼ −1). For the former two classes, we can
construct iΣðσ0 ⊗ ΓÞ ¼ iσz ⊗ Γ; this operator gives −1
upon squaring and commutes with all the elements in the
original Clifford algebra excluding Σ, which implies that
DIII and CI, which correspond to R3 and R7 in the
Hermitian case, are unified into AIII (C1), since iσz ⊗ Γ
behaves like a complex unit that changes the real AZ classes
into the complex ones [50]. For the latter two classes, we can
construct Σðσ0 ⊗ ΓÞ ¼ σz ⊗ Γ; this operator gives 1 upon
squaring and commutes with all the elements in the original
Clifford algebra excluding Σ, which implies that the topo-
logical number of classes BDI and CII simply gets doubled,
since σz ⊗ Γ has two different subspaces of eigenstates with
eigenvalues �1 [50].
We list all the results in Table I. In summary, the effect of

non-Hermiticity is equivalent to adding a chiral symmetry
that commutes with all the original symmetries. As a result,
A, DIII, and CI are unified into AIII, AI and D are unified
into BDI, AII and C are unified into CII, and AIII, BDI, and
CII become duplicated.

D. Discussions

A few remarks are in order here. First, the unification of
classes AI and D and classes AII and C, as well as that of
classes DIII and CI, can be understood as a consequence of
the one-to-one mapping between a time-reversal-symmetric
Hamiltonian and a particle-hole-symmetric Hamiltonian
which are transformed to each other by simple multipli-
cation of one or the other by i [150]. Such a unification
holds true for very general requirements of continuous
deformation other than maintaining invertibility, such as the
existence of a complex band gap [111].
Second, despite the fact that the classification of

non-Hermitian matrices is equivalent to that of unitary
matrices, the periodic table (Table I) differs significantly
from that of Floquet systems [61]. This difference is partly
[151] due to the different meanings of time-reversal-
symmetric and particle-hole-symmetric operators in the
context of Hamiltonians and time-development operators.
In the former case, we require AHA−1 ¼ ηAH, while in the
latter case we require AUA−1 ¼ U−ηA .
Third, a two-dimensional non-Hermitian system turns

out to be always trivial in our classification. This result does
not contradict a recently discovered Chern number for
separable non-Hermitian bands [111], since all the bands
can be deformed to touch each other without hitting a base
energy. For example, let us show how to trivialize a Chern
insulator without the spectrum touching at the origin (here,
we assume EB ¼ 0). We consider a two-band system

Hðkx; kyÞ ¼ −iγσ0 þ sin kxσx þ sin kyσy

þ ðm − cos kx − cos kyÞσz ð34Þ
and start from ðγ; mÞ ¼ ð0; 1Þ, which describes a Hermitian
Chern insulator [41]. We can first gradually introduce a
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global loss up to, e.g., γ ¼ 0.25 [see Fig. 7(a)], then change
m into, e.g., m ¼ 3, and finally remove the global loss by
reducing γ to zero. It is clear that the origin is not touched
by the spectrum of Hðkx; kyÞ during the whole process.
Such a continuous deformation is, however, forbidden in
Ref. [111], because a band touching occurs at m ¼ 2.
Although the AZ classes are always trivial in two

dimensions in our framework, nontrivial topological phases
do exist in other symmetry classes. For example, by setting
γ ¼ 0 in Eq. (34), we have

σxHðkx; kyÞσx ¼ −Hð−kx; kyÞ ð35Þ
even for a complex m. With the symmetry constraint in
Eq. (35) alone, we know that theHermitianizedHamiltonian
(22) exhibits not only a chiral symmetry Σ but also a mirror
symmetry (with respect to the y axis) σz ⊗ σx that commutes
withΣ, leading to aZ classification [49]. In Fig. 7(b),we plot
the spectrum for m ¼ 1þ 0.5i with a nontrivial mirror
winding number 1 [49] and find a mode with zero energy
under the open-boundary condition. Such a zero-energy
mode should be robust due to the interplay of a nontrivial
non-Hermitian Chern number [111] and the inversion
symmetry of the spectrum enforced by Eq. (35). This
observation, together with the bulk-edge correspondence
found in one dimension, suggests that a topologically
nontrivial bulk with respect to a base energy EB implies
one or more robust edge modes at EB (or crossing EB upon
the change of boundary condition), which ismuch stronger a
requirement than the existence of robust edge modes (that
may appear anywhere), which can be ensured by a nontrivial
non-Hermitian Chern number as discussed in Ref. [111].
From this viewpoint, it may not be so incomprehensible that
two-dimensional non-Hermitian systems in AZ classes are
always trivial—these systems may exhibit robust edge
modes but are not expected to exhibit an edge mode at
the base energy, in general.
Finally, we again emphasize that weak topological

numbers [44] are not shown in Table I. Indeed, we can
define two winding numbers

wμ ≡
Z

π

−π

dkμ
2πi

∂kμ ln detHðkÞ; μ ¼ x; y; ð36Þ

for any two-dimensional lattices, but they inherit from
the lower dimension (d ¼ 1) and are not genuinely two-
dimensional topological invariants. On the other hand, a
nontrivial weak topological number can lead to a dramatic
change in the spectrum under different boundary condi-
tions, just like the one-dimensional case shown in Fig. 4(a).

V. TOPOLOGICAL INDICES FOR NON-
HERMITIAN SYSTEMS

In this section, we identify the topological indices and
provide some concrete examples for all the nontrivial non-
Hermitian AZ classes in zero and one dimensions.

A. Zero dimension

According to the K-theory classification (see Table I), if
we impose either time-reversal or (and) particle-hole
symmetry, we obtain two (four) types of topologically
different matrices. Since a matrix of class BDI is made from
two independent matrices of class AI (or D), it suffices to
focus on a single Z2 topological number. Furthermore,
class AI and class D can be mapped into each other by
simply multiplying the imaginary unit i [150]; therefore,
we will primarily discuss the case of class AI without the
loss of generality.
Note that an involutory (T2 ¼ 1) time-reversal symmetry

can always be represented as T ¼ K in an appropriate basis
[152], under which all the time-reversal-symmetric matri-
ces are real. In this case, the polar decomposition becomes
H ¼ OR, where O is orthogonal and R is real, symmetric,
and positive definite. SinceH ≃O, we conclude that theZ2

topological number characterizes the two disconnected
sectors of an orthogonal group. In terms of H, this
topological number can be defined as

s≡ sgnðdetHÞ; ð37Þ

which takes on 1 (−1) if there is an even (odd) number of
eigenvalues on the negative real axis (see Fig. 8). Using the
correspondence between classes AI and D, the Z2 index of
a particle-hole-symmetric Hamiltonian can be defined as

s0 ≡ sgnðdet iHÞ; ð38Þ

which takes on 1 (−1) if there is an even (odd) number of
eigenvalues on the positive imaginary axis.

1. PT-symmetric systems

Remarkably, in the sense of Eq. (37) [Eq. (38)], a PT-
symmetry-breaking (an anti-PT-symmetry-breaking [77])
transition across an exceptional point can be identified as a
topological transition. While the PT symmetry physically

FIG. 7. (a) Spectrum of Eq. (34) with ðγ; mÞ ¼ ð0.25; 1Þ. The
zero mode in the γ ¼ 0 limit (sparse dots) disappears due to the
global spectrum shift along the imaginary energy axis (indicated
by the arrows). (b) The same as (a) but with ðγ; mÞ ¼ ð0; 1þ
0.5iÞ. The symmetry constraint given in Eq. (35) enforces the
spectrum to be inversion symmetric, leading to a robust zero
mode (gray dot). In both (a) and (b), the blue (red) dots
correspond to the periodic- (open-) boundary condition, and
the system size is 40 × 40.
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differs from the T symmetry, as long as the symmetry
operator is involutory and antiunitary, the topological
classification in zero dimension is the same as class AI.
Note that the classification differs in higher dimensions (see
Table II and Appendix I). As a minimal example, we
consider a non-Hermitian two-level system [83]

H ¼ Ωσx þ iγσz; Ω; γ ∈ R; ð39Þ

which features a PT symmetry σxK. It is easy to check that
detH ¼ γ2 −Ω2 and, thus, s ¼ −1 (s ¼ 1) in the PT-
unbroken (PT-broken) phase. A topological transition with
anti-PT-symmetry breaking (class D) can similarly be
constructed by multiplying Eq. (39) by i.
At first glance, the conclusion that a PT-symmetry-

breaking transition is topological seems rather odd, since in
Hermitian systems the concept of SPT is complementary to
spontaneous symmetry breaking. As for non-Hermitian
systems, this is possible due to the conceptual difference in
defining topological phases as dynamical phases instead of
states of matter so that the eigenstates do not necessarily
respect the symmetry. In particular, the Z2 topological
number (37) for class AI in zero dimension is determined
solely by the energy spectrum. The emergence of E and E�
is indeed topologically forbidden if they originate from two
real energies with opposite signs, which is because in PT-
symmetric systems a pair of complex-conjugate eigenval-
ues emerges when two real eigenenergies coalesce; if these
real eigenenergies have opposite signs, they have no
alternative but to meet at the origin, which, however, is
forbidden by our assumption. Now the sign of the product
of the two eigenvalues, which gives the Z2 index in
Eq. (37), is negative before the PT-symmetry breaking

and positive after it. Thus, the PT transition is topologically
forbidden unless the origin is touched.

2. Quantum channels

Another important example is quantum channels or
completely positive (CP) and trace-preserving (TP) maps.
A CPTP map always has a Kraus representation [153]

EðρÞ ¼
X
α

KαρK
†
α; ð40Þ

where the Kraus operators Kα satisfy
P

αK
†
αKα ¼ I.

Alternatively, E can be represented as an enlarged non-
Hermitian matrix E ¼ P

αKα ⊗ K�
α on the Liouville space

V ≡ V ⊗ V�. Remarkably, defining KðρÞ≡ ρ† as the
Hermitian-conjugate superoperator, which is antiunitary
[154] and involutory (K2ðρÞ ¼ ρ), we have

EKðρÞ ¼ KEðρÞ ¼
X
α

Kαρ
†K†

α; ð41Þ

which is actually the Hermiticity-preserving property of E
[122]. Such an inherent symmetry is absolutely robust,
unlike the PT symmetry which can hardly be exact due to
experimental imperfection. Therefore, a CPTP map E
always belongs to the AI class and is classified by a Z2

topological index, determined by the sign of det E ∈ R. We
note that the same classification applies to aCPmap, which
can also be represented by Eq. (40) with no constraints on
Kα’s. With the TP property imposed, the eigenvalues of E
are enforced to be on or inside the unit circle in the complex
plane [155].
It is natural to define a trivial map if it is connected to the

identity channel I . It follows that E is trivial as long as
det E > 0. In this sense, each invertible quantum dynamical
map Φt is trivial, since Φt can continuously be deformed
into Φ0 ¼ I , irrespective of whether Φt is Markovian or
not [156]. Conversely, we can conclude that a topologically
nontrivial quantum channel with det E < 0 can never be
continuously generated by a Markovian dynamics. It is
nevertheless easy to construct a nontrivial channel via
random unitary circuits which take the form EðρÞ ¼P

jpjUjρU
†
j with

P
jpj ¼ 1. A prototypical example is

the isotropic depolarization channel for a single qubit
[112]:

EdðρÞ ¼ pρþ 1 − p
3

X
μ¼x;y;z

σμρσμ; ð42Þ

whose extension Ed ⊗ I has widely been used to introduce
imperfection into amaximally entangled qubit pair [157].We
can check that detEd ¼ ½ð4p − 1Þ=3�3 so that a topological
transition occurs at p ¼ 1

4
, where the channel becomes a

constant (fully depolarized) map EdðρÞ ¼ ½ðσ0Þ=2�.

FIG. 8. Spectrum deformation in a class AI system described by
a 3 × 3 matrix in zero dimension. The spectrum is always
symmetric with respect to the real axis. Without touching
EB ¼ 0, the number of eigenvalues on the negative or positive
real axis can change only by an even number, so a Z2 index
(s ¼ −1) can be defined as in Eq. (37).

TABLE II. Topological classification of PT-symmetric systems
without other symmetries.

d 0 1 2 3 4 5 6 7

π0ðRdþ1Þ Z2 Z2 0 2Z 0 0 0 Z
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If the quantum channel plays a role of a Floquet
superoperator for a periodically driven open system
[158], the stroboscopic evolution is governed by
ρðnþ1ÞT ¼ EðρnTÞ, where T is the driving period. If we
look at the long-time dynamics, the topological index
sgnðdet EÞ might become meaningless, since only the
long-lived modes with eigenvalues with nearly unit norm
are relevant. Denoting the superprojector onto such a
metastable manifold Vms as P, which can always be made
Hermiticity preserving [159], we expect the sign of
detVms

PEP, denoted by sms, to be important for the
long-time dynamics. If sms ¼ −1, there must be an odd
number of long-lived modes near −1. When the system is
perturbed, we expect that at least one long-lived mode stays
on the real axis near −1. This expectation cannot be ensured
by sms ¼ 1, since all the long-lived modes near −1 can
leave the real axis in a pairwise manner. The above
discussion is parallel to the Z2 topological insulators
[5–7], on the surface of which at least one Dirac cone
survives under time-reversal-symmetric perturbations.
As a minimal illustration, let us consider a critical (zero

full determinant) quantum channel

ExyðρÞ ¼
1

2
ðσxρσx þ σyρσyÞ; ð43Þ

which has a single long-lived mode σz with eigenvalue −1
in addition to the steady state σ0=2 so that sms ¼ −1.
Starting from j↑i, we find an antiferromagnetic (↑↓↑↓…)
stroboscopic dynamics [see the red dots in Fig. 9(b)]. The

same dynamics can be realized by unitary π rotation along
the x axis, i.e., ExðρÞ ¼ σxρσx, which has two modes with
eigenvalues −1 so that sms ¼ s ¼ 1. Now let us disturb the
temporal antiferromagnetic pattern by inserting a sudden
pulse RϵðρÞ ¼ e−iπϵσxρeiπϵσx at the end of each evolution
period [see Fig. 9(a)]. As clearly shown by the Fourier
transform of hσzit¼nT in Fig. 9(c), the antiferromagnetic
pattern is robust against perturbation to Exy with sms ¼ −1
but is fragile for Ex with sms ¼ 1. This observation is
reminiscent of discrete time crystals [123–125,160–162],
which are Floquet systems that spontaneously break the
discrete time-translation symmetry. Akin to intrinsic topo-
logical order [22], long-range entanglement has been
identified as the origin of the rigidity of unitary discrete
time crystals in one dimension [163]. It would be interest-
ing to study whether a nontrivial Z2 topological index,
which emerges from the inherent time-reversal-like sym-
metry (41), can lead to the absolute rigidity of a dissipative
discrete time crystal in zero dimension [158].

B. One dimension

We discuss the general structures of non-Hermitian
Hamiltonians in one dimension and the corresponding
topological numbers in addition to class A.
For class DIII (CI), we can always find a basis under which

Γ ¼ σz ⊗ 1 and T ¼ σx ⊗ iσyK (C ¼ σx ⊗ iσyK). The
symmetry requirements ΓHðkÞ ¼ −HðkÞΓ and THðkÞ ¼
Hð−kÞT [CHðkÞ ¼ −Hð−kÞC] lead to the following general
form of the Hamiltonian:

HðkÞ ¼
�

0 hðkÞ
�σyh�ð−kÞσy 0

�
; ð44Þ

where hðkÞ can be an arbitrary invertible matrix andþ and−
correspond to class DIII and CI, respectively. Because of the
arbitrariness of hðkÞ, the topological classification coincides
with class A, and the topological number is determined by
wh ∈ Z, i.e., the winding number of hðkÞ.
For class AIII, we can always find a basis under which

Γ ¼ σz ⊗ 1. The general form of the Hamiltonian reads

HðkÞ ¼
�

0 h1ðkÞ
h2ðkÞ 0

�
; ð45Þ

with h1;2ðkÞ being arbitrary invertible matrices. Note that
there are two independent winding numbers wh1 and wh2 in
accordance with the classification Z ⊕ Z. We can generally
have wh2 ≠ −wh1 , implying different numbers of (quasi)zero
modes localized at the two open boundaries. As shown in
Fig. 10(a), a two-band model with h1ðkÞ ¼ J1e2ik and
h2ðkÞ ¼ J2e−ik in Eq. (45) has two and one zero modes
at the left and right boundaries, respectively, as a conse-
quence of asymmetric hopping amplitudes. It is interesting to
note that for the Hermitian case the non-Hermitian Z ⊕ Z

RεExRεExy
(a)

(b) (c)

FIG. 9. (a) Pulse sequence of the stroboscopic qubit dynamics
governed by two types of operations RϵExy and RϵEx. In the
former case, π pulses are applied randomly in the x and y
directions with equal probability, leading to sms ¼ −1. In the
latter case, π pulses are applied in the x direction, leading to
sms ¼ 1. (b) Starting from ρ0 ¼ j↑ih↑j, the dynamics of hσzi for
ϵ ¼ 0 (red dots) are the same between the two cases. As for
ϵ ¼ 0.05π (green dots), the dynamics governed by RϵExy (left)
exhibit a discrete time-crystalline-like behavior [160–162], but
the dynamics governed by RϵEx do not. (c) Fourier transform of
hσzit¼nT into the frequency domain. The single peak located at
ω ¼ 0.5ωT (ωT ≡ ½ð2πÞ=T�) stays robust for RϵExy (left) but
splits into two peaks for RϵEx (right).
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group degenerates into its subset fðn;−nÞ∶n ∈ Zg due to
the Hermitian constraint (wh2 ¼ −wh1), which is nothing but
the Z classification of class AIII. It is worth mentioning that
the Hamiltonian studied in Ref. [70], which can be expressed
as HðkÞ ¼ ðvþ r cos kÞσx þ rðsin k − iÞσy (v; r ∈ R),
gives an example of the two generators of Z ⊕ Z by taking
0 < ðv=rÞ < 2 and −2 < ðv=rÞ < 0. The 1

2
Z topological

number identified therein turns out to be 1
2
ðwh1 − wh2Þ,

which can be a half-integer only if the system is non-
Hermitian.

For class AI (D), we can always find a basis under which
T ¼ K (C ¼ K) so that H�ðkÞ ¼ Hð−kÞ [H�ðkÞ ¼
−Hð−kÞ]. This requirement enforces the matrix elements
of HðkÞ to be

P
n∈Z cneink, with cn’s being real (purely

imaginary) numbers, yet the winding number of HðkÞ does
run over Z. All the different topological phases can be
realized in a single-band modelHðkÞ ¼ eink [HðkÞ ¼ ieink]
with n ∈ Z.

For class BDI, we can always find a basis under which
Γ ¼ σz, T ¼ K, and C ¼ σzK. The general form of the
Hamiltonian is again given by Eq. (45), but h�1;2ðkÞ ¼
h1;2ð−kÞ is required. Similar to class AIII, we have two
independent winding numbers wh1 and wh2 , and the
topological classification is Z ⊕ Z.

For class AII (C), we can always find a basis under
which T ¼ iσyK (C ¼ iσyK) so that σyH�ðkÞ ¼ Hð−kÞσy
[σyH�ðkÞ ¼ −Hð−kÞσy]. This symmetry requirement
restricts the form of the Hamiltonian to be

HðkÞ ¼
�

h1ðkÞ h2ðkÞ
∓ h�2ð−kÞ �h�1ð−kÞ

�
; ð46Þ

where h1ðkÞ and h2ðkÞ can be arbitrary [butHðkÞ should be
invertible after all] and the upper (lower) signs correspond
to class AII (C). In this case, we can prove that the winding

number of a Hamiltonian must be even (see Appendix H),
as indicated by the 2Z classification. An important physical
implication is that there must be an even number of
(quasi)edge modes, which actually form Kramers pairs. In
Fig. 10(b), we present a minimal model of spin-1

2
fermions

with h1ðkÞ ¼ 0 and h2ðkÞ ¼ Jeik in Eq. (46).
For class CII, we can always find a basis under which

Γ ¼ σz ⊗ 1 and T ¼ σ0 ⊗ iσyK (C ¼ σz ⊗ iσyK). The
general form of the Hamiltonian in this case is again given
by Eq. (45) but with σyh�1;2ðkÞ ¼ h1;2ð−kÞσy; namely, both
h1ðkÞ and h2ðkÞ belong to class AII. The topological
characterization is thus given by two even integers wh1
and wh2 , consistent with the 2Z ⊕ 2Z classification.

VI. CONCLUSION AND OUTLOOK

In summary, we have established a fundamental frame-
work for a systematic study of topological non-Hermitian
systems. The two guiding principles are a dynamical view-
point on topological systems and the constraint such that the
energy spectrum neither touches nor crosses the base point.
We have studied one-dimensional non-Hermitian lattices
belonging to class A in detail, identified the topological
winding number, demonstrated the robustness against dis-
order, unveiled an exotic bulk-edge correspondence, and
discussed the experimental relevance. We have given a
systematic classification based onK theory and obtained the
periodic table (Table I) for non-Hermitian AZ classes. All
the nontrivial classes in zero dimension and one dimension
have been exemplified.
Our work opens up many possibilities for future studies.

Even if we confine ourselves to non-Hermitian AZ classes,
physical properties of topological phases in three dimen-
sions are yet to be explored, though the formal classifica-
tions have been worked out. For class A, we expect the Z
winding number to be given by

w3D ¼
Z
BZ

d3k
24π2

ϵμνσTr½QμðkÞQνðkÞQσðkÞ�; ð47Þ

where QμðkÞ ¼ H−1ðkÞ∂kμHðkÞ. Such an expectation is
based on the fact that Eq. (47) gives the winding number for
a three-dimensional Hermitian system belonging to class
AIII, if HðkÞ is the off-diagonal block of the entire
Hamiltonian [43]. It follows from Eq. (47) that, once
two components of QμðkÞ commute, w3D vanishes, which
rules out the possibility for a nontrivial system with a single
band, in stark contrast to the one-dimensional case. Since
the noncommutativity between QμðkÞ’s is essential for a
nonzero w3D, not only the spectrum but also the eigenstates
become important. It would be interesting to explore the
edge physics and dynamical response in such a system with
nonzero w3D. We also note that the topological phases in

(a)

(b)

FIG. 10. Non-Hermitian open chains with unidirectional hop-
pings (indicated by the arrows) belonging to (a) class AIII and
(b) class AII. In (a), the number of zero modes at the left
boundary (enclosed by a red rectangle) is not the same as that on
the right boundary. In (b), the zero modes form Kramers pairs,
which interchange via the time-reversal operator T, and therefore
the total number of the edge modes must be even.

ZONGPING GONG et al. PHYS. REV. X 8, 031079 (2018)

031079-16



four dimensions can be realized by using the time direction
[164,165] or the synthetic dimension [166]; thus, they are
also physically relevant.
Compatible with the K theory, our framework can

readily be extended to including crystalline symmetries
[50,51]. An important class is PT-symmetric systems,
whose Bloch Hamiltonians satisfy

PTHðkÞ ¼ HðkÞPT; ð48Þ

with PT being antiunitary and involutory. Unless the spatial
dimension is zero (as discussed in Sec. VA), Eq. (48)
differs from the time-reversal symmetry THðkÞ ¼ Hð−kÞT
in the sense that the sign of k is not inverted. As shown in
Table II, we have obtained the complete classification for
PT-symmetric systems without any other symmetries
(see Appendix I for details). In particular, we have a Z2

classification in one dimension. Dramatic changes in
classification are expected when additional symmetries
are imposed. We also recall that crystalline symmetries
open up the possibilities for exploring topological phases of
non-Hermitian systems in two dimensions. Indeed, we have
already provided such an example in Sec. IV D.
We can also modify the setup to perform a systematic

classification for nonunitary quantum walks, as mentioned
in Sec. IV B. Moreover, in analogy with Hermitian systems
for which the K-theory approach has been applied to
classify bulk-gapless topological phases [148], our frame-
work has a potential to be generalized to non-Hermitian
systems with exceptional points in the bulk [68,70–72]. We
can even go beyond the K-theory classification to seek for
homotopically distinguishable (like the Hopf insulator
[149]) non-Hermitian topological phases with a definite
Hilbert-space dimension as exemplified in Appendix I. Last
but not the least, it could be an intriguing theoretical
challenge to consider the topological characterization for
interacting many-body non-Hermitian systems [97,98],
which are expected to be accessible in near-future atomic,
molecular, and optical experiments in light of the rapid
development in reservoir engineering [167].
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APPENDIX A: CONSISTENCY BETWEEN
THE WINDING-NUMBER EXPRESSIONS

We first show that Eq. (10) is equivalent to Eq. (5). For
this purpose, it suffices to show the following identity for
an invertible matrix with a single parameter:

∂k ln detHðkÞ ¼ Tr½H−1ðkÞ∂kHðkÞ�: ðA1Þ

By definition, the left-hand side of Eq. (A1) reads

∂k ln detHðkÞ≡ lim
ϵ→0

ln detHðkþ ϵÞ − ln detHðkÞ
ϵ

: ðA2Þ

Since only the leading-order term [OðϵÞ] survives in the
numerator, we can approximate detHðkþ ϵÞ as

det½HðkÞ þ ϵ∂kHðkÞ� þOðϵ2Þ
¼ detHðkÞ det½I þ ϵH−1ðkÞ∂kHðkÞ� þOðϵ2Þ
¼ detHðkÞf1þ ϵTr½H−1ðkÞ∂kHðkÞ�g þOðϵ2Þ: ðA3Þ

Substituting the last expression in Eq. (A3) into Eq. (A2)
and using lnð1þ xÞ ¼ xþOðx2Þ, we obtain Eq. (A1).
We then show that Eq. (14) reproduces Eq. (5) if the

translation invariance is imposed. In the quasimomentum
representation, the entire Hamiltonian Htot with flux Φ can
be block-diagonalized as

HtotðΦÞ ¼ ⨁
k¼ð2jπ=LÞ−π

H

�
kþΦ

L

�
; ðA4Þ

which leads to

ln detHtotðΦÞ ¼
X

k¼ð2jπ=LÞ−π
ln detH

�
kþΦ

L

�
: ðA5Þ

Therefore, we have

Z
2π

0

dΦ
2π

∂Φ ln detHtotðΦÞ

¼
X

k¼ð2jπ=LÞ−π

Z
2π

0

dΦ
2πL

∂k ln detH

�
kþΦ

L

�

¼
XL−1
j¼0

Z ½2ðjþ1Þπ=L�−π

ð2jπ=LÞ−π

dϕ
2π

∂k ln detHðkþ ϕÞ

¼
Z

π

−π

dk
2π

∂k ln detHðkÞ: ðA6Þ

It is instructive to illustrate the equivalence between the
k-based and Φ-based winding numbers in a concrete
model, such as
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H ¼
X
j

ðJ1c†jþ1cj þ J2c
†
j−1cjþ1Þ ðA7Þ

with J1 ¼ 1 and J2 ¼ 2. According to the dispersion relation
HðkÞ ¼ J1e−ik þ J2e2ik, it is easy to know that detHðkÞ
encircles the origin twicewhen k runs over theBrillouin zone,
as shown in Fig. 11(a). Note that a given k corresponds
to a single eigenenergy, since there is only a single band.
On the other hand, for a finite ringwith lengthL and subjected
to a flux Φ, the Hamiltonian becomes HtotðΦÞ ¼P

jðe−iðΦ=LÞJ1c
†
jþ1cj þ e2iðΦ=LÞJ2c

†
j−1cjþ1Þ, where a given

Φ corresponds to L eigenenergies that form a discretized
configuration of the continuous curve HðkÞ [see Fig. 11(b)].
When Φ increases from 0 to 2π, the spectrum of HtotðΦÞ
returns to itself, and the trajectory exactly generates the
energy spectrum in the thermodynamic limit in a counter-
clockwise manner, leading to the same winding number
w ¼ 2.

APPENDIX B: FURTHER DETAILS
ON THE HATANO-NELSON MODEL

In this Appendix, we explain in detail how the topo-
logical transition is related to the Anderson transition and
provide some quantitative results.

1. Spectral flow and localization

The topological interpretation of the Anderson transition
in the Hatano-Nelson model is based on the intuition that a
fully localized system is topologically trivial. Here, we
justify this statement from the viewpoint of the potential-
gradient response of wave functions.
To judge whether an eigenstate is localized, we can look

at either its static properties such as the real-space profile or
the dynamical properties such as the response to a potential
gradient. Here, we apply the latter, which turns out to work
well even in small systems. For an open chain with length L

and described by the Hamiltonian H ¼ P
j;lJjlc

†
jcl subject

to a perturbation δH ¼ −ðV=LÞPjjc
†
jcj, starting from an

eigenstate jφ0i of H and assuming adiabaticity, the nor-
malized wave function jψ ti at time t can well be approxi-
mated by e−iδHtjφti, with jφti being the eigenstate of
HðtÞ≡ eiδHtHe−iδHt ¼ P

j;lJjle
−iðVt=LÞðj−lÞc†jcl. Note that

jψ ti ≃ e−iδHtjφti shares almost the same real-space profile
as jφti. When the system becomes a ring, by replacing Vt
with Φ in HðtÞ, the obtained Hamiltonian HðΦÞ is
equivalent to that of a ring with a flux Φ inside. This
correspondence can be understood from the fact that a
temporally changing magnetic flux induces an electromo-
tive force. If jφ0i is localized, then by definition the
wave function should be rigid against the induced electric
field. In contrast, a delocalized state should be flexible
in response to a change of Φ, giving rise to transport
phenomena. Recalling that the spectra of HðΦÞ and
HðΦþ 2πÞ coincide, we expect the complex energy of a
localized (delocalized) state to almost stay unchanged (flow
to another eigenvalue) when varying Φ from 0 to 2π.
Accordingly, the spectral trajectory of HðΦÞ cannot form
any loop and is topologically trivial for a fully localized
system.
We illustrate the above argument for a Hatano-Nelson

ring (11) with a complex on-site random potential and
L ¼ 30. As shown in Fig. 12, when changing Φ from 0 to
2π, eight of the 30 eigenvalues almost stay unchanged,
while the remaining 22 eigenvalues flow clockwise to their
nearest neighbors, forming a loop. We also show the Φ
dependence of two representative wave functions on and
outside the loop. The former wave function (left-upper
panel) is relatively extensive in real space and changes
dramatically with respect to Φ, while the latter one is
localized and exhibits rigidity against a change in Φ. Given
a base point (e.g., EB ¼ 0) inside the loop, the spectral flow
of the delocalized modes contributes to the winding number
of w ¼ 1.

FIG. 11. (a) Energy spectrum of an infinite translation-invariant
lattice described by Eq. (A7). The arrows indicate the flow of
eigenenergy as the wave vector k increases from 0 to 2π.
(b) The same as in (a) but for a finite (L ¼ 30) ring subjected
to a flux Φ. The arrow indicates the spectral flow as Φ changes
from 0 to 2π.

FIG. 12. Spectral flow (right) and two representative eigenwave
functions (left) of a Hatano-Nelson ring with complex disorder
W ¼ 2.5, L ¼ 30, JL ¼ 2, JR ¼ 1, and threaded by a varying
flux Φ. A delocalized wave function (left-upper panel) behaves
flexibly, while a localized wave function (left-lower panel)
exhibits rigidity.
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2. Derivation of Eq. (15)

For convenience, we choose the gauge for which only the
hopping between the Lth site and the first site is multiplied
by e∓iΦ such that

HðΦÞ¼

2
66666666664

V1 JL 0 �� � 0 JRe−iΦ

JR V2 JL �� � 0 0

0 JR V3 �� � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 �� � VL−1 JL
JLeiΦ 0 0 �� � JR VL

3
77777777775
: ðB1Þ

Expanding the determinant of HðΦÞ in terms of the first
column, we obtain

detHðΦÞ¼V1det

2
666666664

V2 JL � � � 0 0

JR V3 � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � VL−1 JL
0 0 � � � JR VL

3
777777775

−JRdet

2
666666664

JL 0 � � � 0 JRe−iΦ

JR V3 � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � VL−1 JL
0 0 � � � JR VL

3
777777775

þð−ÞL−1JLeiΦdet

2
666666664

JL 0 � � � 0 JRe−iΦ

V2 JL � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � JL 0

0 0 � � � VL−1 JL

3
777777775
:

ðB2Þ

Denoting Qm;n as the determinant of the truncated Hatano-
Nelson Hamiltonian (always subjected to the open-
boundary condition) from site m to n, we have

detHðΦÞ ¼ V1Q2;L − JRJLQ3;L þ ð−ÞL−1JLRe−iΦ
þ ð−ÞL−1JLLeiΦ − JRJLQ2;L−1; ðB3Þ

which can be rewritten in the form of Eq. (15) with

PðfVjgÞ ¼ Q1;L − JRJLQ2;L−1: ðB4Þ

Here we use the recursion relation

Qm;n ¼ VmQmþ1;n − JRJLQmþ2;n

¼ VnQm;n−1 − JRJLQm;n−2; ðB5Þ

from which we can explicitly write down

PðfVjgÞ¼V1V2…VL

XbL=2c
jSj¼0

X
S⊂ZL∶jn−n0 j>1∀ n≠n0 ;n;n0∈S

Y
n∈S

−JRJL
VnVnþ1

: ðB6Þ

The condition jn − n0j > 1 in Eq. (B6) should be imposed
on ZL, where jL − 1j is identified as 1.

3. Some exact results

While it is difficult to obtain the distribution of PðfVjgÞ,
analytical results are available under specific choices
of parameters; e.g., JLJR ¼ 0 (unidirectional hopping)
and jVjj obeys a uniform distribution over ½0;W�. In this
case, PðfVjgÞ ¼

Q
L
j¼1 Vj and the distribution of ΞL ≡

− ln½jPðfVjgÞj=WL� ∈ ½0;∞Þ can explicitly be obtained
as follows. Defining ξj ≡ − lnðjVjj=WÞ ∈ ½0;∞Þ, we find
that ξj obeys the standard exponential distribution, i.e.,
Probðξj ¼ ξÞ ¼ e−ξθðξÞ, where θðξÞ is the Heaviside step
function. Since ΞL ¼ P

L
j¼1 ξj with ξj’s being independent,

ΞL obeys the Gamma distribution

ProbðΞL ¼ ΞÞ ¼ ΞL−1

ðL − 1Þ! e
−Ξ: ðB7Þ

For L ≫ 1, we can check that ΞL=L approximately obeys
the Gaussian distribution with mean 1 and variance L−1,
and thus it approaches the delta distribution at 1 in the
thermodynamic limit. Recalling that the topological tran-
sition occurs at jPðfVjgÞj ¼ JL with J ≡maxfjJRj; jJLjg
or, equivalently, ΞL=L ¼ − lnðJ=WÞ; we thus obtain the
critical disorder strength to be Wc ¼ eJ. Note that this
critical value does not depend on whether Vj is complex
or not. However, this property should be unique to the
unidirectional hopping.
In Fig. 13, we provide numerical evidence that supports

the above prediction. For real disorder, we calculate the
disorder average of jEjm ≡minfjEj∶ detðE −HÞ ¼ 0;
E ∈ Cg, which is the minimum absolute value of the
complex eigenenergies. In the thermodynamic limit, we
expect a nonzero (zero) hjEjmi in the delocalized (local-
ized) phase. For a finite system, as shown in Fig. 13(a),
we find a sharper and sharper crossover near Wc
when increasing the system size. For complex disorder,
we use the inverse participation ratio, which is defined
as IPRðfρjgÞ ¼

P
L
j¼1 ρ

2
j for a normalized distributionP

L
j¼1 ρj ¼ 1, where ρj ∝ jφjψ jj (this quantity has been

demonstrated to be a better indicator than jψ jj2 and jφjj2
[116]), ψ j is a right eigenwave function of H, and φj is the
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corresponding left eigenwave function. We calculate the
disorder average of the maximum of a rescaled quantity

ζ≡ 1

L × IPRðfρjgÞ
∈ ð0; 1� ðB8Þ

for individual realizations. In the thermodynamic limit, we
have ζ ≠ 0 if ρj decays no faster than the square-root power
law and ζ ¼ 0 otherwise, especially for an exponentially
localized ρj. As shown in Fig. 13(b), we find a similar
crossover for hζMi from finite to zero near Wc, and the
crossover becomes sharper for larger L.
More generally, even if the analytic expression of

ProbðΞL ¼ ΞÞ is not available, the distribution of ΞL=L
asymptotically approaches the Gaussian distribution with
mean EðξjÞ and variance Var½ξj�=L as long as the central
limit theorem is applicable. For example, when jVjj obeys
the Lorentz distribution ProbðjVjj ¼ VÞ ¼ f2W=½πðV2þ
W2Þ�gθðVÞ, the rescaled variable ξj ≡ − lnðjVjj=WÞ
obeys the hyperbolic secant distribution Probðξj ¼ ξÞ ¼
ðπ cosh ξÞ−1 with mean 0 and variance π2=4. Therefore, the
critical disorder strength for the Lorentz distribution is
Wc ¼ J, which is consistent with that obtained by the
Green’s function method [168].
Finally, we provide an example which demonstrates a

topological transition without a localization transition. We
consider a binary disorder Vj ¼ �W with an equal
probability of occurrence for W and −W. In this case,
jPðfVjgÞj ¼ WL in an arbitrary disorder realization, so the
critical disorder strength for the topological transition is
given by Wc ¼ J. On the other hand, the winding number
with respect to EB ¼ �W is always one in the thermody-
namic limit, no matter how large W is, which implies that
there are always some delocalized modes and the system

never undergoes a localization transition. Nevertheless,
there is indeed a qualitative change in the spectrum when
W exceeds Wc—a single loop splits into two loops [see
Fig. 14(a)]. As shown in Fig. 14(b), such a transition is
accompanied by the onset of the deviation of ζM from one.

APPENDIX C: PROOF OF THE BULK-EDGE
CORRESPONDENCE

To be specific, we focus on a single-band lattice with
finite-range hopping amplitudes Jj. That is, we have at
most p-site (q-site) hopping towards the right (left)
direction. Hence, denoting z ¼ eik, the dispersion relation,
or the characteristic equation of the Schrödinger equation,
can be written as

E ¼ fðzÞ ¼
Xq
j¼−p

Jjzj; ðC1Þ

with J−p; Jq ≠ 0. Assuming that the winding number w is
non-negative, we impose the right semi-infinite condition,
so the general solution of an edge state takes the form

ψ j ¼
XS
l¼1

Xnl
m¼1

cl;m
dm−1

dzm−1 z
j

����
z¼zl

; ðC2Þ

where zl (l ¼ 1; 2;…; S) is the nlth-order zero of fðzÞ ¼ 0
given in Eq. (C1) and inside of the unit circle jzj ¼ 1, i.e.,
jzlj < 1. Using the argument principle (21) and the
assumption w ≥ 0, we have

P
S
l¼1 nl ¼ Z ¼ pþ w ≥ p,

with p being the effective number of poles for jzj < 1.
Indeed, there is a single pth-order pole at z ¼ 0, implying
zl ≠ 0 for all l ¼ 1; 2;…; S. The initial condition reads

ψ0 ¼ ψ−1 ¼ � � � ¼ ψ−pþ1 ¼ 0; ðC3Þ

which, together with Eq. (C2), leads to a set of homo-
geneous linear equations

(a) (b)

FIG. 13. (a) Disorder-averaged minimum absolute value of
energy hjEjmi for the Hatano-Nelson model (11) with JL ¼ 1,
JR ¼ 0, real on-site disorder Vj ∈ ½−W;W�, and different system
sizes ranging from L ¼ 1000 to 7000. (b) Disorder-averaged
maximum ζ [defined in Eq. (B8)] for the same model but with
complex disorder Vj ¼ jVjjeiϕj, where jVjj ∈ ½0;W� and
ϕj ∈ ½0; 2π�, and different system sizes ranging from L ¼ 100

to 1600. In both (a) and (b), the red dashed line indicates the
theoretical transition point Wc ¼ e ¼ 2.718…. The number of
disorder realizations ranges from thousands to hundreds, depend-
ing on the system size. The error bars denote twice the standard
deviations of the mean.

(a) (b)

FIG. 14. (a) Complex-energy spectra of Eq. (11) with L ¼ 103,
JR ¼ 0, JL ¼ 1, and binary on-site disorder Vj ¼ �W with an
equal probability of occurrence for W and −W, where W ¼ 0.5,
0.9, 1.1, 1.5. (b) Disorder-averaged maximum ζ [see Eq. (B8)] for
the same model but with different system sizes ranging from
L ¼ 100 to 1600. The red dashed line indicates the theoretical
topological transition point Wc ¼ 1.
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Mc ¼ 0; ðC4Þ

where the elements of the generalized Vandermonde
matrix [169] M ¼ ½Muv�p×Z and the coefficient vector c ¼
ðc1; c2;…; cZÞT are given by

Mj;σðl;mÞ ¼
dm−1

dzm−1 z
−jþ1

����
z¼zl

;

cσðl;mÞ ¼ cl;m; ðC5Þ

with σðl; mÞ≡P
l−1
r¼1 nr þm, 1 ≤ l ≤ S, and 1 ≤ m ≤ nl.

To see how many degrees of freedom survive under the
condition imposed by Eq. (C4), we have to determine the
rank of M, which equals that of MT . Suppose that the rank
ofMT does not saturate the maximum p; there must exist a
nonzero vector a ¼ ða1; a2;…; apÞT that satisfies

MTa ¼ 0: ðC6Þ

Defining a polynomial gðzÞ≡Pp
j¼1 ajz

j−1 with 0 <
deg gðzÞ ≤ p − 1 due to the fundamental theorem of
algebra, Eq. (C6) can explicitly be written down as

dm−1

dzm−1 gðz−1Þ
����
z¼zl

¼ 0; ðC7Þ

implying that gðzÞ contains a polynomial factor
Q

S
l¼1

ðz − z−1l Þnl and, thus, deg gðzÞ ≥ P
S
l¼1 nl ¼ Z. Recalling

that Z ≥ p, deg gðzÞ ≥ Z contradicts deg gðzÞ ≤ p − 1, so
the original assumption that rankðMTÞ < pmust be wrong.
In other words, both the rank of MT and that of M saturate
the maximum p. Therefore, the number of independent
cj’s satisfying Eq. (C4), or the degeneracy of zero modes
localized at the left edge, turns out to be Z − p ¼ w. As an
example with twofold degeneracy, we can examine the
model given in Eq. (A7) and check that

ψ ð1Þ
j ¼ ð−Þj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
ð1þ β þ β2Þβj−1

r
ð1 − eð2πi=3ÞjÞ;

ψ ð2Þ
j ¼ ð−Þj

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − β3Þβj−2

1þ β

s
½1þ βe2πi=3

þ ðβ þ e2πi=3Þeð2πi=3Þj þ ðβ þ 1Þe−ð2πi=3Þðjþ1Þ�
ðC8Þ

span the zero-mode space, where β ¼ ðJ1=J2Þ2=3.
Now let us next discuss the case of w < 0. If we use

the same boundary condition as above, we again obtain
Eq. (C4), but there are more rows than columns inM, since
p ¼ Z − w > Z. We can thus pick out the first Z rows ofM
to construct a square matrix M̃ such that

M̃c ¼ 0 ðC9Þ

is necessarily satisfied. Straightforward calculations give

det M̃ ¼ C
Y

1≤r<s≤l
ðz−1s − z−1r Þnrns ≠ 0; ðC10Þ

where the factor C ¼ Q
S
l¼1ð−Þnl−1z−nlðnl−1Þl

Qnl
m¼1ðm − 1Þ!.

Therefore, as a necessary condition of Eq. (C4), Eq. (C9) is
sufficient to enforce c to be 0, implying no edge modes
localized at the left boundary. On the other hand, if we
change the boundary condition to be left semi-infinite,

ψ−j ¼
XR
l¼1

Xml

n¼1

cl;n
dn−1

dzn−1
z−j

����
z¼ζl

; ðC11Þ

where ζl (l ¼ 1; 2;…; R) is the mlth zero of fðzÞ outside
jzj ¼ 1. Recalling that zpfðzÞ is a polynomial with degree
pþ q, we have Z0 ≡P

R
l¼1 ml ¼ pþ q − Z ¼ q − w. This

result is consistent with directly applying the argument
principle to fðz−1Þ, which has a single qth-order pole z ¼ 0
inside the circle of jzj ¼ 1, leading to

I
jzj¼1

dz
2πi

d
dz fðz−1Þ
fðz−1Þ ¼ Z0 − q: ðC12Þ

Here, we have used the fact that ζ−1l ’s are the zeros of
fðz−1Þ inside the unit circle jzj ¼ 1. Noting that the left-
hand side in Eq. (C12) can be shown to be the minus of that
in Eq. (21) via a change of the integration variable, we
obtain Z0 ¼ q − w. The initial condition

ψ0 ¼ ψ1 ¼ � � � ¼ ψq−1 ¼ 0 ðC13Þ

can again be written in the form of Eq. (C4), but the
elements of the generalized Vandermonde matrix M ¼
½Muv�q×Z0 and the coefficient vector c ¼ ðc1; c2;…; cZ0 ÞT
become

Mj;μðl;nÞ ¼
dn−1

dzn−1
zj−1

����
z¼ζl

;

cμðl;nÞ ¼ cl;n; ðC14Þ

where μðl; nÞ≡P
l−1
r¼1mr þ n, 1 ≤ l ≤ R, and 1 ≤ n ≤ mr.

Using the same technique as in the previous paragraph, we
can prove thatM takes the maximum rank q, so the number
of independent degrees of freedom, or the degeneracy of the
zero modes localized at the right boundary, turns out to
be Z0 − q ¼ −w.
As an application of the bulk-edge correspondence for

non-Hermitian Hamiltonians, we can demonstrate the bulk-
edge correspondence in Hermitian systems with a chiral
symmetry (class AIII), whose Hamiltonian is given by
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Eq. (22). Such a Hamiltonian can be unitarily transformed
into σx ⊗

ffiffiffiffiffiffiffiffiffiffi
H†H

p
, so the full spectrum reads f�E1;

�E2;…g, with fE1; E2;…g being the eigenvalues offfiffiffiffiffiffiffiffiffiffi
H†H

p
, which is semipositive definite. Therefore, the

statement that there are 2jwj zero modes of Eq. (22) is
equivalent to the fact that there are jwj zero modes offfiffiffiffiffiffiffiffiffiffi
H†H

p
. We already know that jwj gives the number of edge

states of H at E ¼ 0 in a semi-infinite space but generally
does not for an open chain. However, it gives the number of
quasieigenstates at E ¼ 0, which almost vanish after being
acted on by H. Using this property, we can show that jwj
does give the number of zero modes for the Hermitian
operator

ffiffiffiffiffiffiffiffiffiffi
H†H

p
.

To this end, we first prove the following theorem:
Theorem 2.—Given D different wave functions jψni

(n ¼ 1; 2;…; D) satisfying kHjψnik < ϵ1 and jhψmjψnij <
ϵ2 ≪ D−1 for all m ≠ n, there must be at least D different
eigenstates of

ffiffiffiffiffiffiffiffiffiffi
H†H

p
with energies less than Eb ¼

fDϵ1=½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðD − 1Þϵ2

p �g.
Proof.—We note that jψni’s are linearly independent.

Otherwise, we can find cj’s (j ¼ 1; 2;…; D) such that
max1≤j≤Djcjj ¼ jcj0 j > 0 and

P
D
j¼1 cjjψ ji ¼ 0, leading to

the contradiction

jcj0 j ¼ jcj0hψ j0 jψ j0ij

¼
����X
j≠j0

cjhψ j0 jψ ji
����

≤
X
j≠j0

jcjjjhψ j0 jψ jij < ϵ2ðD − 1Þjcj0 j ≪ jcj0 j: ðC15Þ

Therefore, denoting V0 ≡ spanfjψ ji∶j ¼ 1; 2;…; Dg,
we have dimV0 ¼ D. For an arbitrary jψi ∈ V0,
which can always be expressed as jψi ¼P

D
j¼1 cjjψ ji=k

P
D
j¼1 cjjψ jik, we can bound kHjψik from

above as

kHjψik ≤
P

D
j¼1 jcjjkHjψ jik
kPD

j¼1 cjjψ jik

<
ϵ1
P

D
j¼1 jcjjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

D
j¼1 jcjj2 −

P
m≠njc�mcnhψmjψnij

q

<
ϵ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðD − 1Þϵ2
p

P
D
j¼1 jcjjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
D
j¼1 jcjj2

q

≤
ffiffiffiffi
D

p
ϵ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðD − 1Þϵ2
p ¼ Ebffiffiffiffi

D
p : ðC16Þ

Consequently, we have

TrV0
½H†H� < E2

b; ðC17Þ

where TrV0
½…� denotes the trace over the subspace V0.

Denoting Pg as the projector onto the Hilbert subspace Vg

spanned by all the eigenstates of
ffiffiffiffiffiffiffiffiffiffi
H†H

p
with energies

less than Eb, we can construct H0 ≡ E2
bð1 − PgÞ ≤ H†H,

leading to

TrV0
½H0� ¼ E2

bðD − TrV0
½Pg�Þ < E2

b

⇔ TrV0
½Pg� ¼ TrVg

½P0� > D − 1; ðC18Þ
where P0 is the projector onto V0. Since TrVg

½P0� ≤
TrVg

½1� ¼ dimVg, which should be an integer, we finally
obtain dimVg ≥ D. ▪
Now let us come back to the eigenvalue problem offfiffiffiffiffiffiffiffiffiffi
H†H

p
for an open chain with length L. We can first work

in the semi-infinite limit to determine a set of orthonormal
zero modes jϕji’s (j ¼ 1; 2;…; jwj) of H and then truncate
and normalize them on a finite chain, obtaining jψ ji’s. Note
that jψ ji’s are now not exact eigenstates of H, but the
conditions of the theorem proved above are satisfied, with
ϵ1 and ϵ2 exponentially small in L, since the deviations
stem from the exponential tail. According to the theorem,
we can find at least jwj eigenstates with exponentially small
energies. We should furthermore mention the impossibility
to find the ðjwj þ 1Þth eigenstate with a small energy that
eventually vanishes in the thermodynamic limit; otherwise,
we will have at least jwj þ 1 zero modes of H in a semi-
infinite space, leading to a contradiction.
It is worthwhile to mention that the bulk-edge corre-

spondence for class AIII (or BDI) alone can alternatively be
proved using the Callias index theorem [170] following
Ref. [36]. However, it seems rather nontrivial whether a
similar method can be applied to a single off-diagonal
block in a class AIII Hamiltonian.

APPENDIX D: LONG-LIVED
QUASIEIGENSTATES AND THEIR

ABSENCE IN HERMITIAN SYSTEMS

According to the bulk-edge correspondence proved in
the last Appendix, we know that, for an open chain and a
given base energy EB ¼ E with respect to which the
winding number is nonzero (w ≠ 0) for the corresponding
periodic ring, there exist w independent quasiedge modes
satisfying

kðH − EÞjψik < AEe−αEL; ðD1Þ
where the constants AE and αE depend on E but not on L. In
the following, we show that such a quasieigenstate is long
lived to a timescale at least proportional to L and, thus,
becomes an exact eigenstate in the limit of L → ∞.
We first clarify that “long lived” means that the free

evolution e−iHtjψi can bewell approximated by e−iEtjψi up
to a long time. To quantify how close jψi is to an eigenstate,
we examine the relative deviation
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RðtÞ≡ ke−iHtjψi − e−iEtjψik
ke−iEtjψik ; ðD2Þ

which cancels the effect of amplification or decay due to a
large imaginary part in E. We can thus bound RðtÞ as

RðtÞ ¼ k½e−iðH−EÞt − 1�jψik

≤
X∞
n¼1

tn

n!
kðH − EÞnjψik

≤
X∞
n¼1

tnkH − Ekn−1
n!

kðH − EÞjψik

< AEkH − Ek−1e−αELþkH−Ekt

¼ ÃEe−αEðL−vEtÞ; ðD3Þ

where ÃE ¼ AEkH − Ek−1 and vE ¼ kH − Ek=αE, with
kOk≡maxkjψik¼1kOjψik being the operator norm.
Here, we iteratively use the inequality kO1O2jψik ≤
kO1kkO2jψik. Since vE ≤ kHk þ jEj can be bounded
by an L-independent quantity, Eq. (D3) implies that up
to a time t� ∼OðL=vEÞ the relative deviation is exponen-
tially small, i.e., − lnRðtÞ ∼OðLÞ, which is consistent with
a naïve expectation from the Lieb-Robinson bound [138].
Nevertheless, we should mention that the Lieb-Robinson
picture may break down in some many-particle non-
Hermitian systems after a global quench [171].
Remarkably, the above analysis does not depend on

the translation invariance. That is to say, as long as
Eq. (D1) holds true, we can claim the existence of long-
lived quasieigenstates even for a disordered system.
Equation (D1) can numerically be justified by calculating
the singular values of H − E followed by finite-size
scaling. To be concrete, we focus on E ¼ 0 and the smallest
singular value λm ≡minkjψik¼1kHjψik in the Hatano-
Nelson model with JL ¼ 2, JR ¼ 1, and a complex on-
site random potential. As for the disorder average, we
consider hln λmi for up to 2.5 × 105 realizations. We choose
hln λmi rather than lnhλmi, because the latter is sensitive to
rare events while the former is not. As shown in Fig. 15,
hln λmi scales linearly with respect to L for a not-too-strong
disorder strength (W ¼ 3, 3.5), implying the robustness of
(quasi)edge modes. When the disorder is strong enough
(W ¼ 4, 5), however, the scaling seems to deviate from
a linear one. We also note that the above analysis implies a
similar Lieb-Robinson behavior for the quench from a
finite chain to the semi-infinite boundary condition, since
Eq. (D1) holds true also in this situation.
Let us move on to disprove the existence of a quasiei-

genstate in a general Hermitian system at any energy E
separated from the spectrum of H ¼ P

jEjjψ jihψ jj. We
first prove that ImE ¼ 0 is necessary for the existence
of a quasieigenstate. Otherwise, by using the inequality
kjψ1i − jψ2ik ≥ jkjψ1ik − kjψ2ikj, we have

RðtÞ ¼ ke−iðH−EÞtjψi − jψik ≥ je−2ImEt − 1j; ðD4Þ

where the right-hand side can exceed any small threshold
after a time interval independent of the system size. We thus
focus on E ∈ R=fEjg from now on. Defining dE ≡
minjjEj − Ej and DE ≡maxjjEj − Ej, which are finite
even when L → ∞, we have

sin
jEj − Ejt

2
>

jEj − Ejt
π

ðD5Þ

for all t < π=DE. Expanding the initial state as
jψi ¼ P

jcjjψ ji, we have

RðtÞ ¼
				X

j

cj½e−iðEj−EÞt − 1�jψ ji
				

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

jcjj2sin2
ðEj − EÞt

2

s

>
2t
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

jcjj2ðEj − EÞ2
s

≥
2dE
π

t; ðD6Þ

at least for t < π=DE. This result (D6) implies a finite time
interval during which the deviation of e−iHtjψi from
e−iEtjψi grows faster than a finite speed 2dE=π for all
jψi, no matter how large the system size L is. Therefore, no
quasieigenstate whose lifetime increases with respect to L
exists in a Hermitian system.
As a simple example, we consider the Hermitian limit of

a Hatano-Nelson lattice:

H ¼ J
X
j

ðc†jþ1cj þ c†jcjþ1Þ; ðD7Þ

whose band dispersion reads EðkÞ ¼ 2J cos k, with a
maximum group velocity of 2J. A naive extension to

W=5

W=4
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W=3

50 100 150 200

–7

–6

–5

–4

–3

–2

–1

L

〈l
nλ

m
〉/

ln
10

FIG. 15. Finite-size scaling for the logarithmic-disorder-
averaged smallest singular value hln λmi of the Hatano-Nelson
Hamiltonian (11) with JL ¼ 2, JR ¼ 1, and complex disorder.
Each point is obtained from 2.5 × 105 disorder realizations.
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imaginary wave vector k ¼ il−1 may suggest that a
localized wave function ψ j ∝ eikj ¼ e−j=l corresponds to
an energy E ¼ 2 coshl−1 outside the spectrum of H.
According to Eq. (D6), however, such a wave function
can never be a quasieigenstate. To confirm this, we
explicitly calculate the dynamics for l ¼ 2 and two differ-
ent system sizes L ¼ 60 and 80 (see Fig. 16). In stark
contrast to the Lieb-Robinson picture, we find a quick
saturation of RðtÞ independent of the system size. The
bound in Eq. (D6) [dashed red lines in Figs. 16(a) and 16
(c)], although not tight, correctly predicts the linear growth

at the initial stage (fitted by dashed purple lines). On the
other hand, the finite system size sets a timescale after
which the wave-packet dynamics fails to be approximated
by free propagation, leading to a revival in RðtÞ. As shown
in Figs. 16(a)–16(d), such a revival time turns out to be well
approximated by tr ¼ L=ð2JÞ.

APPENDIX E: DERIVATION OF THE
SEMICLASSICAL EQUATION OF MOTION
FOR NONUNITARY BLOCH OSCILLATIONS

In the continuous limit, the Schrödinger equation
(generally nonunitary) in momentum space is given by

i∂tψ tðkÞ ¼ ½EðkÞ − iF∂k�ψ tðkÞ; ðE1Þ

where EðkÞ is the dispersion relation of the band and F is a
potential gradient. Starting from an arbitrary initial state
ψ0ðkÞ, we can write down a formal solution to Eq. (E1) as

ψ tðkÞ ¼ e−i
R

t

0
dt0E½k−Fðt−t0Þ�ψ0ðk − FtÞ; ðE2Þ

which satisfies the quasiperiodicity ψ tþ½ð2πÞ=F�ðkÞ ¼
e−ið2π=FÞĒψ tðkÞ with Ē ¼ R

π
−π½ðdkÞ=ð2πÞ�EðkÞ. Note that

no approximation is made so far except for the continuous
limit. We mention that a similar semiclassical analysis on
nonunitary wave-packet dynamics is made in Ref. [172].
If we focus on the semiclassical regime, ψ0ðkÞ should be

highly localized in the Brillouin zone, such as a Gaussian
packet ψ0ðkÞ ¼ ð ffiffiffiffiffiffi

2π
p

σkÞ−1=2e−k2=ð2σ2kÞ near k ¼ 0, with a
small dispersion σk ≪ 1. In this case, we can expand E½k −
Fðt − t0Þ� in Eq. (E2) near Ft0 (in terms of k − Ft ∼ σk) up
to ðk − FtÞ2, such that the wave packet ψ tðkÞ stays
(approximately) Gaussian:

ψ tðkÞ ≃ ð
ffiffiffiffiffiffi
2π

p
σkÞ−1=2e−i

R
t

0
dt0EðFt0Þe−if½EðFtÞ−Eð0Þ�=Fgðk−FtÞ−fð1=4σ

2
kÞþi½E0ðFtÞ−E0ð0Þ�=2Fgðk−FtÞ2 ; ðE3Þ

where E0ðkÞ is the simplified notation for f½dEðkÞ�=dkg. We can thus calculate the normalization N t ≡ hψ tjψ ti asR
π
−π dkjψ tðkÞj2, which turns out to be

N t ¼
e2
R

t

0
dt0ImEðFt0Þþf2½ImEðFtÞ−ImEð0Þ�2σ2kg=fF2−2σ2kF½ImE0ðFtÞ−ImE0ð0Þ�gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2σ2k
F ½ImE0ðFtÞ − ImE0ð0Þ�

q : ðE4Þ

By taking the limit σk → 0, we obtain the rightmost equation in Eq. (24). The center of mass in the Brillouin zone can also
be read out from Eq. (E3) as

hkit ¼ Ftþ 2½ImEðFtÞ − ImEð0Þ�σ2k
F − 2σ2k½ImE0ðFtÞ − ImE0ð0Þ� ; ðE5Þ

which reduces to Ft in the σk → 0 limit. After the Fourier transform ψ tðxÞ ¼
R
π
−π½ðdkÞ=

ffiffiffiffiffiffi
2π

p �ψ tðkÞeikx, we can obtain the
real-space wave function and determine the center of mass in real space as

(a) (b)

(c) (d)

FIG. 16. Dynamics in a Hermitian single-band lattice with J ¼
1 and starting from a wave function ψ j ∝ e−j=l with l ¼ 2.
(a) Relative deviation RðtÞ. Inset: Enlarged view of an initial
behavior up to t ¼ 2.5 (orange region). The purple (red) line
shows a linear fit [the lower bound in Eq. (D6)]. (b) Density
profile jψ jðtÞj2 at the leftmost three sites (j ¼ 1, 2, 3) in
comparison with the initial values jψ jð0Þj2 (dashed lines). The
system size is L ¼ 60 in (a) and (b). (c) and (d) are the same as (a)
and (b), except for L ¼ 80. In (a)–(d), the blue dashed line
denotes the revival time tr ¼ L=ð2JÞ.

ZONGPING GONG et al. PHYS. REV. X 8, 031079 (2018)

031079-24



hxit ¼
ReEðFtÞ − ReEð0Þ

F

−
2σ2k
F2

Imf½E�ðFtÞ − E�ð0Þ�½E0ðFtÞ − E0ð0Þ�g; ðE6Þ

which reduces to the middle equation in Eq. (24) in the
limit of σk → 0.
It is worthwhile to consider the specific case of free

diffusion with F ¼ 0. Taking the limit of F → 0 in
Eqs. (E4)–(E6), we obtain

N t ¼
e2ImEð0Þtþf2½σkImE0ð0Þt�2g=f1−2σ2kImE00ð0Þtgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2σ2kImE00ð0Þt
q ;

hkit ¼
2σ2kImE0ð0Þt

1 − 2σ2kImE00ð0Þt ;

hxit ¼ ReE0ð0Þt − 2σ2kIm½E0�ð0ÞE00ð0Þ�t2: ðE7Þ

Applying the last equation to a wave packet with the
momentum-space spread of σ2k ¼ π=L in the clean Hatano-
Nelson model (7) with JL, JR ∈ R, we have

hxit ¼ −
2π

L
ðJ2L − J2RÞt2: ðE8Þ

This result implies that the shift of the center of mass due to
asymmetric hopping amplitudes is a finite-size effect.
In other words, a wave packet in the classical limit does
not move in spite of the asymmetry in hopping amplitudes.

APPENDIX F: IMPLEMENTATION OF
ASYMMETRIC HOPPING AMPLITUDES WITH
ULTRACOLD ATOMS IN OPTICAL LATTICES

We here show that it is possible to realize a non-
Hermitian system on the basis of reservoir engineering
[167,173–176]. Generally speaking, by engineering a
Lindblad master equation [177]

_ρt ¼ −i½H; ρt� þ
X
j

D½Lj�ρt; ðF1Þ

where D½L�ρ≡ LρL† − fL†L; ρg=2, we can obtain an
effective non-Hermitian Hamiltonian

Heff ¼ H −
i
2

X
j

L†
jLj ðF2Þ

under postselection [97,98,171] or for loss processes of a
coherent condensate [72,74,99]. In particular, if we choose

H ¼ −J
X
j

ðc†jþ1cj þ H:c:Þ; Lj ¼
ffiffiffi
κ

p ðcj � icjþ1Þ;

ðF3Þ

where Lj’s describe a collective one-body loss [99], the
effective non-Hermitian Hamiltonian involves asymmetric
hopping amplitudes:

Heff ¼
X
j

ðJRc†jþ1cj þ JLc
†
jcjþ1Þ − iκN; ðF4Þ

where JR ¼ −J ∓ ðκ=2Þ differs from JL ¼ −J � ðκ=2Þ
and N ¼ P

jc
†
jcj is the total particle-number operator,

so that the last term corresponds to a background loss.
Unlike Fig. 5(d), the energy spectrum is now below the real
axis due to atom loss, and the imaginary part of its center is
located at −iκ.
It is not straightforward to engineer a nonlocal one-body

loss like Lj’s in Eq. (F3), since the usual loss process occurs
locally [74]. However, we can effectively engineer such a
novel nonlocal loss by using a nonlocal Rabi coupling to
some auxiliary degrees of freedom which undergo rapid
local loss. After adiabatically eliminating the fast decay
modes [178], we end up with an effective dynamics with
target degrees of freedom alone, which now effectively
undergo nonlocal loss.
As illustrated in Fig. 17, we consider a system of

two-level atoms with internal states jgi and jei in a
one-dimensional optical lattice with lattice constant a.
Because of an opposite Stark shift, the potential minima
for jei locate in the middles of each of those for jgi. The
excited state jei is assumed to be unstable and rapidly
escape from the lattice at a rate γ. Parallel to the optical
lattices, we further apply a running-wave laser with
frequency ωR, which is detuned from the atomic frequency
ωeg byΔ ¼ ωR − ωeg. The strength of the laser-atom dipole
coupling is characterized by a Rabi frequency ΩR. Within
the tight-binding approximation and neglecting the inter-
actions between atoms, we can write down the master
equation in the rotating frame of reference as

FIG. 17. Implementation of asymmetric hopping amplitudes
in optical lattices. A stable (dissipative) optical lattice is applied
to the ground (excited) state jgi (jei). A running wave parallel
to an optical lattice couples jgi to jei, which undergoes rapid on-
site loss at a rate γ. By making the wavelength of the running
wave equal to that of the lattice constant, the phases of Rabi
couplings can be adjusted to change by π=2 compared with the
left nearest ones.
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_ρt ¼ −i
X
j

½H0 þ V; ρt� þD½cje�ρt; ðF5Þ

where H0 includes the bare tunneling and V couples
different internal states:

H0 ¼ −J
X

j;α¼g;e

ðc†jþ1;αcjα þ H:c:Þ −
X
j

Δc†jecje;

V ¼ 1

2

X
j

½Ωe�ikRjac†jeðcjg þ e�ði=2ÞkRacjþ1;gÞ þ H:c:�:

ðF6Þ

Here, þ (−) corresponds to the right (left) propagating
wave, and the Rabi coupling Ω can be determined from
Ω ¼ ΩR

R
dxe�ikRxWðxÞW½x − ða=2Þ�, with WðxÞ being

the Wannier function. In the regime of maxfΔ; γg ≫ J,
Ω, we can adiabatically eliminate cje in Eq. (F5) to
obtain Eq. (F1) with the same H as in Eq. (F3) and a
more general Lj:

Lj ¼
ffiffiffi
γ

p jΩjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ 4Δ2

p ðcjg þ e�ði=2ÞkRacjþ1;gÞ; ðF7Þ

which gives the second equation in Eq. (F3) if kRa ¼ π or
λR ¼ 2a. Note that, even if λR differs from λL ¼ 2a, which
is the wavelength of the optical lattice laser, we can still
obtain Eq. (F3) by tilting the running wave from the optical
lattice by an angle θR ¼ arccosðλR=λLÞ as long as λR < λL.
In a realistic experiment, we can, for example, use 174Yb

atoms and 1117-nm-wavelength lasers to create the anti-
magic optical lattice with opposite Stark shifts for g ¼ 1S0
and e ¼ 3P0 [179]. We choose a relatively shallow (yet the
tight-binding approximation still works well) lattice depth
V0 ¼ 5Er, with Er ≡ h2=ð2mλ2LÞ ¼ 2π × 0.92 kHz being
the recoil energy. The bare hopping amplitude is thus
estimated to be J ¼ 0.066Er ¼ 2π × 60 Hz [180]. The on-
site loss rate γ of jei can be controlled by a 1285-nm laser
that couples 3P0 to 1P1 resonantly, and we can still make
κ ¼ γjΩj2=ðγ2 þ 4Δ2Þ as small as, e.g., 0.2J ¼ 2π × 12 Hz
by tuning γ, jΩj, or/and Δ. Here, we should make γ much
less than the band gap 4.6Er of the optical lattice to justify
the tight-binding approximation for jei (e.g., we can
choose Δ ¼ 0 and γ ¼ 5Ω ¼ 0.33Er ¼ 2π × 0.30 kHz).
The wavelength of the running-wave laser is fixed at
578.42 nm (clock transition [181]), and the tilting angle
should be θR ¼ 58.8°. The potential gradient can be made
from an optical dipole force via an additional laser beam
[16] and may be chosen to be, e.g., F ¼ 4κ ¼ 2π × 48 Hz,
which is much smaller than the band gap and thus justifies
the single-band treatment. The maximum displacement can
thus be evaluated to be 2J=F ¼ 5 lattice sites, which is
enough to be measured by single-site resolved quantum gas
microscopy [182]. The period of Bloch oscillations is

TB ¼ 2π=F ¼ 21 ms, after which the survival fraction
of atoms is given by e−2κTB ¼ 4.3%, which should be
sufficiently large for reconstructing the complex-energy
spectrum if there are at least thousands of atoms at the
initial time.

APPENDIX G: PROOF OF THEOREM 1

To prove HðkÞ ≃UðkÞ, we have to first confirm that
UðkÞ belongs to the same symmetry class of HðkÞ. For an
arbitrary antiunitary symmetry or antisymmetry A ¼ UAK
(UA is unitary and K denotes complex conjugation), if
AHðkÞ ¼ ηAHð−kÞA (ηA ¼ �1), by performing the polar
decomposition HðkÞ ¼ UðkÞPðkÞ [PðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H†ðkÞHðkÞ

p
],

we obtain

UAU�ðkÞP�ðkÞ ¼ ηAUð−kÞPð−kÞUA

⇒ UAP�2ðkÞU†
A ¼ P2ð−kÞ

⇒ ½Pð−kÞ þ UAP�ðkÞU†
A�½Pð−kÞ −UAP�ðkÞU†

A� ¼ 0;

ðG1Þ

where the unitarity of UA and UðkÞ [U�ðkÞ] and the
Hermiticity of PðkÞ [P�ðkÞ] are used. Recalling that
PðkÞ [P�ðkÞ] is positive definite, we can infer that Pð−kÞ þ
UAP�ðkÞU†

A is also positive definite and thus invertible.
This fact implies

Pð−kÞ ¼ UAP�ðkÞU†
A

⇒ UAU�ðkÞ ¼ ηAUð−kÞUA: ðG2Þ

Following a similar procedure, we can prove that UðkÞ and
HðkÞ share the same unitary symmetry or antisymmetry,
irrespective of the fact that k is flipped or not. This result
explains why we use the term symmetry class in the
beginning, which is much wider than the AZ class (for
example, we can consider crystalline symmetries).
We can now construct the following path:

HλðkÞ ¼ ð1 − λÞHðkÞ þ λUðkÞ
¼ UðkÞ½ð1 − λÞPðkÞ þ λ�; ðG3Þ

which satisfies H0ðkÞ ¼ HðkÞ and H1ðkÞ ¼ UðkÞ.
Furthermore, HλðkÞ shares the same symmetry as HðkÞ
and UðkÞ and is indeed invertible due to the fact that
ð1 − λÞPðkÞ þ λ is positive definite.

APPENDIX H: EVENNESS OF THE WINDING
NUMBERS FOR CLASSES AII AND C

Since the winding number is a topological invariant, it
can be calculated from the unitarized Hamiltonian UðkÞ.
Let us first show that Tr½U†ðkÞ∂kUðkÞ� is an even function
of k. From Eq. (G2), we know that
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− Tr½U†ð−kÞ∂kUð−kÞ�
¼ −η2ATrfUAUTðkÞU†

A∂k½UAU�ðkÞU†
A�g

¼ −Tr½UTðkÞ∂kU�ðkÞ� ¼ −Trf½∂kU†ðkÞ�UðkÞg
¼ −∂kTr½U†ðkÞUðkÞ� þ Tr½U†ðkÞ∂kUðkÞ�
¼ Tr½U†ðkÞ∂kUðkÞ�; ðH1Þ

where we have used Tr½AT � ¼ Tr½A�, ∂kðABÞ ¼ ð∂kAÞBþ
A∂kB, and U†ðkÞUðkÞ ¼ 1. Using the fact that
Tr½U†ðkÞ∂kUðkÞ� is even in terms of k, the winding number
can be expressed as

w ¼
Z

π

−π

dk
2πi

Tr½U†ðkÞ∂kUðkÞ�

¼ 2

Z
π

0

dk
2πi

Tr½U†ðkÞ∂kUðkÞ�

¼ 2

Z
π

0

dk
2πi

∂k ln detUðkÞ: ðH2Þ

However, this expression is not sufficient to ensure
w ∈ 2Z, since

R
π
0 ½ðdkÞ=ð2πiÞ�∂k ln detUðkÞ may be a

half-integer. Indeed, Eq. (H2) is applicable also to classes
AI and D. To rule out this possibility, we should show that
detUð0Þ and detUðπÞ share the same argument.
To this end, we first write down the explicit form ofUðΓÞ

(Γ ¼ 0; π):

UðΓÞ ¼
�

u1 u2
∓ u�2 �u�1

�
; ðH3Þ

where, due to UðΓÞU†ðΓÞ ¼ 1, the blocks u1;2 satisfy

u1u
†
1 þ u2u

†
2 ¼ 1; u1uT2 ¼ u2uT1 : ðH4Þ

If u1 is invertible, the second identity in Eq. (H4) is
equivalent to u−11 u2 ¼ ðu−11 u2ÞT , and we can apply the
determinant formula for block matrices [169],

det

�
A B

C D

�
¼ detA detðD − CA−1BÞ; ðH5Þ

to Eq. (H3), obtaining

detUðΓÞ ¼ det u1 detð�u�1 � u�2u
−1
1 u2Þ

¼ ð�1Þm det u1 det½u�1 þ u�2ðu−11 u2ÞT �
¼ ð�1Þm det u1 detðu†1 þ u−11 u2u

†
2Þ

¼ ð�1Þm detðu1u†1 þ u2u
†
2Þ ¼ ð�1Þm: ðH6Þ

Here, m is the size of u1;2 in Eq. (H3) [or that of h1;2 in
Eq. (46)], and the properties detA ¼ detAT and detðABÞ ¼
detA detB are used. If u1 is not invertible, we expect UðΓÞ
to be connected to some nearby time-reversal- or particle-
hole-symmetric (with T2 ¼ −1 or C2 ¼ −1) unitary matri-
ces with invertible u1, and we arrive at the same result due

to the fact that detUðΓÞ ¼ �1 cannot change suddenly
during continuous deformation.
In fact, we can easily obtain the same result by looking at

the individual eigenvalues. Note that TUðΓÞ ¼ UðΓÞT
[CUðΓÞ ¼ −UðΓÞC] with Γ ¼ 0; π, and T2 ¼ −1 (C2 ¼
−1) enforce the eigenvalues to appear in pairs like e�iθα

(�e�iθα), leading to detUð0Þ ¼ detUðπÞ ¼ 1 [detUð0Þ ¼
detUðπÞ ¼ ð−1Þm]. This fact ensures that w ¼ 2

R
π
0 ½ðdkÞ=

ð2πiÞ�∂k ln detUðkÞ is quantized as an even integer.

APPENDIX I: CLASS A WITH PT SYMMETRY

The set of all the PT-symmetric systems without any
other symmetry requirements can be obtained by imposing
PT symmetry into the non-Hermitian class A, which is
equivalent to the Hermitian class AIII. Since the PT
symmetry does not invert the sign of the wave vector k,
we have to use the formula developed in Ref. [51]:

KA
Cðs; d; dkÞ ¼ π0ðRs−dþ2dkÞ; ðI1Þ

where s is determined by the properties of the antiunitary
symmetry A and dk is the number of k components that do
not change their signs under A. It is clear that dk ¼ d for
A ¼ PT, and s should be 1 (BDI-like), since PT is
involutory and commutes with the virtual chiral symmetry.
We can thus obtain the classification in all dimensions
shown in Table II. Note that this classification does not rule
out the possibilities of other topological numbers in PT-
symmetric systems with exceptional points in the bulk
[68,70–72].
A remarkable result in Table II is that a one-dimensional

PT-symmetric system HðkÞ is characterized by a Z2

topological index rather than a Z winding number (see
Table I). Such a Z2 index should be different from
sgn½detHðkÞ�, which is like a weak topological index
inheriting from zero dimension. Instead, this result should
be understood from the fact that the fundamental group of
GLþ

n ðRÞ is Z2 for n > 2, where GLþ
n ðRÞ denotes the

general linear group of all the n × n real matrices with a
positive determinant. This understanding is based on the
fact that PT can always be represented as K under a
properly chosen basis and the sign of detHðkÞ determines
the branch of GLnðRÞ to which HðkÞ’s belong.
We should mention that if the Hilbert-space dimension is

fixed to be 2, which is the case in a recent experiment [88],
we obtain a different classification as Z. This result is
because each matrix in GLþ

2 ðRÞ can continuously be
deformed into that in SOð2Þ, which is isomorphic to S1,
giving π1½GLþ

2 ðRÞ� ¼ π1ðS1Þ ¼ Z. This example, similar
to the Hopf insulator in Hermitian systems [149], illustrates
the fact that the homotopy classification does not always
coincide with the K-theory classification, since the latter
allows the operation of band insertion and thus contains
more general operations of continuous deformation.
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An important implication of the Z2 classification is that
any PT-symmetric two-band lattice can be trivialized if we
combine it with its copy. Let us demonstrate such a
trivialization process for two copies of PT-symmetric
Su-Schrieffer-Heeger chains realized in Ref. [88]:

Hα ¼
X
j

ðJb†jαajα þ J0a†jþ1;αbjα þ H:c:Þ

þ iγ
X
j

ða†jαajα − b†jαbjαÞ; ðI2Þ

where ajα and bjα correspond to two sublattice degrees of
freedom, jα labels the jth unit cell in the αth chain (α ¼ 1,
2), and J; J0; γ ∈ Rþ. In terms of Pauli matrices, the Bloch
Hamiltonian can be written as HαðkÞ ¼ ðJ þ J0 cos kÞσxþ
J0 sin kσy þ iγσz, with maxkfdetHαðkÞg ¼ γ2 − ðJ − J0Þ2.
Assuming J0 − J > γ, after unitarization and changing
the basis such that PT ¼ K, we obtain the Oð2Þ
matrix ½J0 sin kσz þ ðJ0 cos kþ JÞσx�=jqðkÞj with qðkÞ ¼
J þ J0e−ik, which has a nontrivial winding number w ¼ 1.
While HαðkÞ alone is nontrivial, we can trivialize the
combined system of the two chains (α ¼ 1, 2) via a phase-
staggered coupling:

H ¼ H1 þH2 þ Jc
X
j

ðia†j1aj2 − ib†j1bj2 þ H:c:Þ; ðI3Þ

which respects the PT symmetry for Jc ∈ R. The deter-
minant of the four-band Bloch Hamiltonian of Eq. (I3) can
be evaluated to be

detHðkÞ ¼ fJ2c þ ½γ þ jqðkÞj�2gfJ2c þ ½γ − jqðkÞj�2g; ðI4Þ

which does not vanish as long as Jc ≠ 0. Therefore, after
introducing a finite phase-staggered coupling Jc, we can
safely change J; J0; γ to zero to obtain a trivial band
insulator.
It is worthwhile to trace the spectral flow in the above

trivialization process. As shown in Fig. 18, under the open-
boundary condition, two pairs of PT-broken edge modes of
the coupled PT-symmetric Su-Schrieffer-Heeger chains are
gradually absorbed into the bulk spectrum. Such a process
is impossible for a single pair of PT-broken edge modes
without touching or crossing the origin and retrieving the
PT symmetry. Note that the reflection symmetry with
respect to the imaginary axis arises from a particle-hole
symmetry C ¼ σzK, which anticommutes with PT ¼ σxK
and also leads to a Z2 classification in one dimension [51]:

KA
Rðs; t; d; dkÞjs¼1;t¼0;d¼1;dk¼1

¼ KA
Rðs − d; t − dk; 0; 0Þjs¼1;t¼0;d¼1;dk¼1

¼ KA
Rð0;−1; 0; 0Þ ¼ π0ðR1Þ ¼ Z2: ðI5Þ

Finally, we make a conjecture that the Z2 index
manifests itself as the number of potentially PT-broken
edge-mode pairs and can, thus, be computed as

s ¼ sgn½detðHo þ ϵÞ�sgnðdetHpÞ; ðI6Þ
where Ho (Hp) is the full Hamiltonian under the open-
boundary (periodic-boundary) condition and ϵ is an arbi-
trarily small real number that is necessary for avoiding an
ill definition in the presence of zero modes, which are
counted as potentially PT-broken pairs. Note that, unlike
the chiral symmetry, a PT-symmetric Hamiltonian main-
tains the PT symmetry under the translation H → H þ E
for all E ∈ R. The topological index given by Eq. (I6) can
be interpreted as whether a topological transition occurs
at the edge that changes the zero-dimensional Z2 index
(discussed in Sec. VA) when the boundary condition
changes. Similar to a Z2 topological insulator [5,6], which
has an odd number of helical modes at the edge, a nontrivial
PT-symmetric system in one dimension should exhibit an
odd number of edge-mode pairs, leading to s ¼ −1. If there
is additional particle-hole symmetry, we can conclude that a
system with s ¼ −1 must have an odd number of pairs of
PT-broken edge modes with purely imaginary eigenener-
gies, and thus the system possesses at least one pair.
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