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We study theoretically and experimentally the emergence of supersolid properties in a dipolar Bose-
Einstein condensate. The theory reveals a ground state phase diagram with three distinct regimes—a
regular Bose-Einstein condensate and incoherent and coherent arrays of quantum droplets. The coherent
droplets are connected by a background condensate, which leads—in addition to the periodic density
modulation—to a robust phase coherence throughout the whole system. We further theoretically
demonstrate that we are able to dynamically approach the ground state in our experiment and that its
lifetime is limited only by three-body losses. Experimentally we probe and confirm the signatures of the
phase diagram by observing the in situ density modulation as well as the phase coherence using matter
wave interference.
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Whether a material is solid, liquid, or gaseous in classical
physics depends on the strength of the interactions with
respect to the motional energy of the particles. In analogy to
this behavior the interplay between quantum fluctuations and
interparticle interactions also leads to newphases ofmatter in
quantummechanics.One example of such quantumphases is
the supersolid [1–6] featuring the periodic density modula-
tion of a solid together with the dissipationless flow of a
superfluid. While these properties are normally thought of
as mutually exclusive, it was shown that they can actually
coexist [2]. More formally speaking, a supersolid features
both on- and off-diagonal long-range order in its density
matrix [1]. Originally, supersolidity was mainly discussed in
the context of 4He, for which it remains elusive in the
experiments [7]. The concept of supersolidity has since been
generalized to other superfluid systems and supersolid
properties have been observed in ultracold atomic systems
for spin-orbit-coupled Bose-Einstein condensates (BECs)
[8] as well as BECs symmetrically coupled to two crossed
optical cavities [9,10]. In these systems the periodicity of the
modulation is induced by the underlying periodic optical
potentials. In contrast, there are physical systems where the
self-organized structure formation is induced by the intrinsic

interactions, and therefore phonon modes of the periodic
modulation are allowed like in classical solids.
One promising system of this type is dipolar quantum

gases [11,12], featuring both short-range contact interactions
as well as long-range dipole-dipole interactions. These
dipolar systems feature a rotonic dispersion relation similar
to 4He [13] which, in addition, is fully tunable by changing
the contact interaction strength as well as the external
confinement along the dipoles. This dispersion relation
has been studied experimentally [14,15] and has led to the
discovery of 2D arrays of quantum droplets [16–18].
However, it was shown that the 2D arrays in these early
experiments were incoherent, excited states of the system.
For the considered geometries the ground state was always a
single droplet [19–22]. In contrast to this, in Ref. [23] we
pointed out that the ground state in strongly confined 2D
geometries is made up of droplet arrays, but we experimen-
tally observed that these arrays rapidly lose their relative
coherence during their dynamical formation process. So
while each droplet is coherent by itself, there is no global
phase coherence between different droplets. In this work
we always refer to this global coherence of the system.
Furthermore, increasing the overlap of the droplet wave
functions through an increase of the remaining weakly
confining trapping direction was proposed as a way to
establish more robust phase coherence in experiments.
A recent theoretical study [24] examined a similar

elongated trapping configuration with periodic boundaries
along one axis perpendicular to the magnetic field. In this
work it was shown that close to the softening of the roton
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mode droplets form, which are immersed in the dilute
superfluid background of a BEC. This special case of
coherent droplets forms only in a very narrow range of
interaction strengths, while for smaller contact interaction
strengths the background vanishes, leading to isolated
droplets. The coherent droplets were shown to exhibit
two distinct excitation modes, a phonon and a phase mode,
which are hallmarks of supersolidity.
At the same time it was observed experimentally that

phase-coherent droplets can exist for a narrow range of
contact interaction strengths [25]. However, in this experi-
ment only the phase information after time-of-flight
expansion was accessible [26] and a detailed theoretical
explanation of the observations is still lacking.
Here we present a comprehensive study of the supersolid

properties of a trapped dipolar gas. First, we show
theoretically that within the framework of the extended
Gross-Pitaevskii equation (eGPE) a phase-coherent and
density-modulated state can be reached dynamically for our
elongated trap geometry. This state is found to be very close
to the ground state of the system. Second, we experimen-
tally realize such a state and observe its properties, both
in situ and in time of flight. With these two complementary
observation techniques we map out the signatures of the
theoretical phase diagram that clearly reveals both a
coherent and an incoherent density-modulated regime.
We start by looking at the theoretical ground state of the

dipolar system within the framework of the eGPE. To this
end, we numerically solve the eGPE using imaginary time
propagation [23] to calculate the ground states. These
simulations are performed for ð2–5Þ × 104 162Dy atoms
in a harmonic potential with trapping frequencies ω ¼
2πð18.5; 53; 81Þ Hz similar to Ref. [25]. Depending on the
contact interaction strength, this yields three distinct
regimes, which are summarized on the right-hand side of
Fig. 1(a) for an atom number of 3.5 × 104. While for
high scattering lengths of as ≥ 95a0 the ground state is a
regular BEC, at low scattering lengths as ≲ 90a0 we
recover the thoroughly studied regime of isolated droplets
[16,17,23,27]. The most interesting regime, e.g., for
as ¼ 94a0, is found in between these two limits and
consists of droplets that are immersed in a residual BEC
background. This background acts as a link between the
droplets and therefore establishes phase coherence.
With these observations in mind we quantify the

transition in terms of the density link between the individ-
ual droplets, in particular between the central droplet and
its nearest neighbors. To do this we analyze cuts through
the center of the simulated densities n ¼ jψ j2 and calculate
the ratio between the first minimum and the central
maximum. This simple measure characterizes the density
overlap between neighboring droplets and is shown in
Fig. 1(b). For a BEC there exists no density modulation and
therefore we set this ratio to 100%. As soon as the density
modulation emerges below as ≈ 94.5a0, this ratio is well

defined and shows a distinct jump followed by a steady
decrease for lower scattering lengths. Interpreting the
overlap as an order parameter, this discontinuity is an
indication of a first-order phase transition, further evi-
denced by the observation of hysteresis in our numerical
simulations [28] and by the experimental signatures in
Ref. [25]. Moreover, this behavior is reminiscent of the

(a)

(b)

(c)

FIG. 1. Phase transition from BEC to immersed droplets to
isolated droplets. (a) Schematic of the experimental sequence and
corresponding ground states. We start from a BEC and then
change the scattering length to its final value, where we observe
three different regimes: at high scattering lengths a BEC, at low
scattering lengths isolated droplets, and in between droplets
immersed in a superfluid background. We compare the dynamical
simulations to the corresponding ground states. The pictures
show the phase in color scale weighted by the density distribu-
tion. (b) To quantify the transition we calculate the ratio of the
first minimum compared to the center peak height of the ground
state containing 3.5 × 104 atoms. (c) Ground state phase diagram
of this calculated ratio for different atom numbers and scattering
lengths. Note that with higher atom number, the number of
droplets, and, as a consequence, also their overlap increases. The
dashed black line is a guide to the eye.
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decrease of the superfluid fraction across the supersolid
phase transition that was observed in previous works
[24,29]. However, note that while the ratio shown in
Fig. 1(b) is a measure of the overlap of the droplets, it does
not directly correspond to the actual superfluid fraction.
The superfluid fraction of the system was shown to notably
exceed the values of this overlap ratio [24].
We extend this study to different atom numbers and show

it as a phase diagram in Fig. 1(c). We observe a clear phase
boundary where the density-modulated state becomes
lower in energy than a regular BEC. This phase boundary
shifts to higher scattering length with increasing atom
number. While overall being located close to the roton
instability, our observed scaling for the simulated ground
states appears different from the approximate roton scaling
for a trapped gas reported in Ref. [25], in particular at
higher interaction strengths.
To study how one can dynamically establish a phase-

coherent state in an experiment, we perform time-dependent
simulations starting from the BEC ground state at as ¼
110a0 and then linearly ramp the scattering length to its final
value within 30 ms. A snapshot of the system after some
evolution time is shown schematically in Fig. 1(a), where the

dynamically reached states are compared to the calculated
ground states. This comparison shows that foras ¼ 94a0, the
dynamically calculated wave function is phase coherent and
very close to the calculated ground state. In contrast to this
foras ¼ 90a0, the phase of the individual droplets is different
and also their number does not match the ground state
prediction [23,28]. Using shorter ramp times in the dynami-
cal simulations, we produce states with a different number of
droplets also for as ¼ 94a0. Only for ramp times≳20 mswe
produce states that are close to the ground state of the system.
For a more quantitative comparison, we compare the

overlap of the dynamically simulated wave function in real
time with the ground state we get from the imaginary time
evolution. We observe that incoherent droplets form soon
after the end of the interaction ramp, while coherent
droplets emerge slowly over several tens of milliseconds.
This longer formation time for the coherent state is in
agreement with a lower energy difference between this state
and the initial BEC. In Fig. 2(a), we show the difference of
the densities in the dynamical case nðtÞ and the ground
state ng:s:, and Fig. 2(b) depicts the evolution of the phase
difference between the central droplet and its nearest
neighbor, which is an indicator for their phase coherence.
In the density difference one can see that for the case of
isolated droplets the difference is significant and actually
increases with time, while for the coherent droplets the
difference approaches zero after the time required for the
droplets to form. The oscillations visible in the density
difference after the formation correspond to a breathing
mode along the droplet array. In the phase difference we
observe that for the isolated droplets the phase difference
increases linearly after the formation. We attribute this to
the different chemical potentials of the two droplets. In
contrast to this, in the coherent regime we observe that the
phase difference remains significantly smaller with very
little variation over time. Our simulations thus reveal the
existence of a state that is both density modulated and phase
coherent and can be reached dynamically by an interaction
ramp into a narrow range of interaction strengths. Given the
superfluid fraction and excitation spectrum that were calcu-
lated inRef. [24], we conclude that this state can be identified
as a dipolar supersolid.
As a next step we include realistic three-body losses in

the simulations with our experimentally measured loss
coefficient L3 ¼ 1.5 × 10−40 m6=s for as ¼ 94a0 [30], as
well as for reference with a lower loss rate of L3=4. When
loss is included a comparison of the densities is challenging
because the ground state continuously changes with atom
number. Therefore, we restrict ourselves to the phase
coherence shown in Fig. 2(b) and again observe only a
small phase difference starting to form during the droplet
formation process. However, this phase difference is rapidly
stabilized and subsequently slowly decreases throughout
the remaining lifetime of the state. An alternative way of
characterizing the difference of the twowave functions is the

g.
s.

g.
s.

(a)

(b)

FIG. 2. Overlap of the calculated dynamical state with the
ground state. (a) Time evolution of the density difference
kng:s: − nðtÞk2=kng:s:k2, where nðtÞ is the dynamical density,
ng:s:. is the ground state density, and k � � � k is the Euclidean norm.
We observe little density overlap for the isolated droplets (red)
and (except for a residual breathing mode) high density overlap
for the coherent droplet state (blue). (b) Time evolution of the
phase difference ϕ0 − ϕ1 between the central droplet and its
nearest neighbor for the dynamical simulation. For the coherent
droplet the phase difference caused during the formation process
is rapidly compensated leading to a vanishing phase difference
between the two neighboring droplets. On the other hand, the
phase difference of isolated droplets increases almost linearly
after the formation, which is due to their difference in chemical
potential. Including three-body losses we see a constant (exper-
imentally measured L3, dashed line) or slowly decreasing (L3=4,
dotted line) phase difference during the lifetime of the droplets.
The arrows indicate the respective formation time of the droplets
for the two scattering lengths.
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fidelity, defined as F ¼ jhΨg:s:jΨðtÞij2. Using this we get a
numerical value of F ≈ 90% after our experimental equili-
bration time of 15 ms. This shows that we expect to
dynamically create a state with transient supersolid proper-
ties very close to the actual ground state even in the presence
of three-body losses.
In order to investigate the formation of a phase-coherent

droplet state experimentally, we prepare a quasipure dipolar
BEC with approximately 4.5 × 104 162Dy atoms at a tem-
perature below 20 nK in a tubular trap with trap frequencies
ω ¼ 2π½19ð1Þ; 53ð1Þ; 87ð1Þ� Hz and Bkẑ, similar to
Ref. [25]. We compensate the gravitational force on the
atoms by ramping up a magnetic field gradient, allowing
for long times of flight to probe the system. Subsequently
we change the scattering length from ∼140a0 to ∼110a0 by
ramping the magnetic field in 80 ms closer to a double
Feshbach resonances of 162Dy located around 5.1 G [30,31].
In order to reach the droplet regime we subsequently ramp
the magnetic field again linearly within 30 ms to the final
scattering length in the range between 89a0 and 98a0 [32].
We then hold the atoms for 15 ms at this field in order to
equilibrate. Finally, we probe the resulting state either in situ
using far-detuned phase-contrast imaging or after time of
flight using absorption imaging. As we are in or close to a
regime where droplets are self-bound, we boost the time-of-
flight expansion velocity by ramping up the scattering length
to ∼140a0 within 100 μs just before the release of the atoms
from the trapping potential. This has the additional advan-
tage that density rapidly decreases, minimizing interaction
effects in the expansion. Moreover, it acts as a zoom greatly
increasing the extent of the interference patterns, and thus,
giving access to subtle features beyond simple nearest-
neighbor phase coherence. As exemplified in Fig. 3, our
experiment thereby reveals both the in situ density modu-
lation as well as the interference pattern of multiple matter
waves emerging after time of flight.
First, we analyze in more detail how the in situ density

distribution changes for different atom numbers and final

scattering lengths. Above a certain atom number threshold
we observe the appearance of multiple droplets aligning
along the weak axis of the trap. Experimentally this density
modulation takes about 5–10 ms to develop. We attribute
this faster formation time compared to the numerical
simulations to fluctuations due to residual excitations
and finite temperature, which can seed the underlying
instabilities driving the phase transition. Because of our
finite imaging resolution of 1 μm, the smaller size of the
droplets, and the imaging aberrations arising thereupon, we
cannot reliably extract the number of droplets or the overlap
between droplets and the background BEC directly from
our images. This resolution-limited imaging also leads to a
larger uncertainty in the extracted atom number compared
to the data obtained in time of flight. As in our previous
work [16], we therefore use the absolute value of the
Fourier transform of the integrated in situ density to
identify images with a density modulation. To this end,
we compare the spectral weight of finite momentum
contributions to the weight of the central peak in momen-
tum space [28]. This ratio is plotted as a function of
scattering length and atom number in Fig. 5(a). Typically,
every coordinate is an average of a few experimental runs
with 80 realizations in total for every scattering length, and
the different atom numbers have been realized by binning
our experimental data. We observe that a density modu-
lation appears above a certain atom number threshold and
compare this to the boundary from the theoretical phase
diagram.With thiswe can clearlymap out a region showing a
density-modulated state in the experiment. For small scatter-
ing lengths and high atom number, we see the modulation
amplitude decreasing again, which is caused by a washing
out of themean distribution due to fluctuations in the number
of droplets and therefore also their spatial separation.
Next, we study the phase coherence of the realized

droplet states via interference after 30 ms time of flight.
For our parameters we typically realize an array of several
droplets. In contrast to the well-known interference of

FIG. 3. Evolution from in situ density distribution to time-of-flight interference. On the left-hand side, we show an exemplary in situ
image together with the integrated density distribution for the phase-coherent droplet regime, revealing a clear density modulation.
Towards the right-hand side, we show the expansion dynamics for different times of flight, which exhibits the characteristic increase of
the fringe spacing of expanding matter waves. On the very right, we show the interference pattern after 30 ms time of flight together with
the corresponding integrated momentum distribution. In these interference patterns a clear substructure at half the principle fringe
spacing can be seen. While the principle interference peaks yield information about the nearest-neighbor coherence, the additional peaks
correspond to next-nearest-neighbor coherence. The individual images shown result from independent experimental realizations.
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two BECs [33], our situation thus leads to a more complex
interference pattern with multiple frequencies [28,34].
For the evaluation of our data we therefore again turn to
the absolute value of the Fourier transform of the integrated
image after time of flight. Note that this Fourier transform of
the time-of-flight density, rather than the wave function,
does not yield again the initial in situ wave function but
rather provides information about the individual frequency
components of the interference pattern. Examples of this
for scattering lengths of as ¼ 92.5a0 and as ¼ 89a0 are

shown in Figs. 4(a) and 4(b), respectively. The gray lines are
single-shot realizations, while the blue and red lines show
the mean of all available realizations for a given atom
number and scattering length, with more than 300 realiza-
tions for every scattering length in total.
We observe a clear difference between the two scattering

lengths, caused by two distinct effects. The data for as ¼
92.5a0 can be identified with coherent droplets and show
stable side peaks at the same position in every realization.
The data for as ¼ 89a0 correspond to incoherent droplets
and show strong fluctuations from realization to realization.
The change in the side peak positions for the incoherent
droplets is caused by a varying number of droplets and,
therefore, a different initial separation from shot to shot,
while the stable position of the side peaks for the coherent
droplets means that the initial state is very reproducible.
In particular, as in the usual double-slit interference, the
height of the Fourier peaks is a measure of the interference
contrast and their shot-to-shot variation thus encodes the
phase coherence of the system. In our case, the individual
Fourier peaks characterize nearest-neighbor, next-nearest-
neighbor, and even higher-order coherences [28]. If the
initial droplets are phase coherent, the side peaks are
expected to always exhibit the same height, and therefore
the corresponding variance should be low. On the other
hand, if the initial droplets are not phase coherent, the peak
height should fluctuate from realization to realization,
and therefore we should observe an increase in the variance
of the peak height. Taken together these two effects—
fluctuating droplet number and, hence, fringe spacing, as
well as incoherent phases between independent droplets—
wash out the mean distribution for as ¼ 89a0, while the
mean distribution for as ¼ 92.5a0 shows clear side peaks.
This already provides clear evidence for the phase coher-
ence between the droplets in the latter case, with the first side
peak [labeled as 1 in Fig. 4(a)] corresponding to nearest-
neighbor coherence, and the second peak (labeled as 2)
corresponding to next-nearest-neighbor coherence. For atom

(a) (b)

FIG. 4. Evaluation of the coherence between neighboring
droplets. Absolute value of the Fourier transform of the integrated
interference patterns after 30 ms time of flight, showing signs of
the multiple frequencies of the interference due to nearest-
neighbor, next-nearest-neighbor, and even higher-order coher-
ence. This is schematically shown in the inset of (a). The gray
lines correspond to single-shot realizations and the blue lines to
the mean of all available realizations for a given atom number for
as ¼ 92.5a0 [(a), blue] and as ¼ 89a0 [(b), red]. In the latter
case, the position of the side peaks changes randomly (b), while
in the coherent droplet regime (a), the side peaks appear at the
same position in every realization and show very little variance
in their amplitude. This provides clear evidence for the phase
coherence between the droplets (a), with the variance of the peak
height of the first side peak corresponding to nearest-neighbor
coherence, the second peak corresponding to next-nearest-
neighbor coherence, and the third to next-next-nearest-neighbor
coherence. The shown exemplary Fourier transforms correspond
to the red points in Figs. 5(b) and 5(c).

(a) (b) (c)

FIG. 5. In situ modulation and phase coherence reveal signatures of the theoretical phase diagram. Spectral weight of the observed
in situ modulation (a), nearest-neighbor coherence (b), and next-nearest-neighbor coherence (c). Only in the range where we observe a
density modulation in (a) we also see interference patterns emerging in time of flight (b), (c). For a narrow range of the contact
interaction strength, we see clear evidence for phase coherence up to the next-nearest neighbor. The red points labeled “a” and “b”
correspond to the exemplary Fourier transforms shown in Figs. 4(a) and (b). The dashed black lines are the same guide to the eye that
was shown in Fig. 1(c).

TRANSIENT SUPERSOLID PROPERTIES IN AN ARRAY OF … PHYS. REV. X 9, 011051 (2019)

011051-5



numbers high enough to yield more than three droplets,
we can even observe a small signal of next-next-nearest-
neighbor interference (labeled as 3).
To quantify the phase coherence we therefore calculate

the variance of the height of the Fourier transform side
peaks [1 and 2 in Fig. 4(a)] normalized to the peak height
[28]. We show these ratios in Figs. 5(b) and 5(c) for
different atom numbers and final scattering lengths. The
results are in very good agreement with our in situ results in
Fig. 5(a), as well as the theoretical phase diagram shown in
Fig. 1(c). Again we find a sharp phase boundary where the
multiple droplet becomes energetically favorable compared
to the BEC state. Below this boundary in the respective
atom number, we observe no interference and therefore
no signal in the Fourier transform. Above this threshold we
always see interference; however, only for a small range of
contact interactions the coherence between droplets is
present. The observed boundaries in all these plots are
in agreement with the simulated ground state phase dia-
gram in Fig. 1(c). Combining the in situ with the interfer-
ence results reveals the signatures of the theoretical phase
diagram, and we see that for a small range of the contact
interaction strength there exists a phase of the system
showing both a density modulation as well as phase
coherence and therefore the hallmark properties of a
supersolid state of matter.
In conclusion, we show theoretically and experimentally

that for a narrow range of interaction strengths our dipolar
quantum gas of 162Dy atoms exhibits a state that is both
density modulated and phase coherent. Together with the
dynamical study of the phase coherence in Ref. [25], this
observation is the first step towards the realization and
identification of a dipolar supersolid, where in contrast to
previous works [8–10] the self-organized density modula-
tion is induced by the intrinsic interactions. In order to
finally prove the supersolid character of the observed state
beyond the phase coherence demonstrated in this work,
an experimental proof of phase rigidity, and hence genuine
superfluidity, is required. As a next step we therefore plan
to investigate the two types of collective excitations, the
phonon and phase modes. Another important aspect we plan
to study is to extend the lifetime of the observed states, which
is currently limited due to three-body losses to approximately
20 ms. This could be accomplished by identifying a region
with lower losses in the rich Feshbach spectrum of 162Dy
[31,35–37].
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Note added.—Recently, we became aware of another related
time-of-flight investigation with Er and Dy atoms [26].
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