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Quantum simulations with ultracold atoms typically create atomic wave functions with structures at
optical length scales, where direct imaging suffers from the diffraction limit. In analogy to advances in
optical microscopy for biological applications, we use a nonlinear atomic response to surpass the
diffraction limit. Exploiting quantum interference, we demonstrate imaging with superresolution of λ=50
and excellent temporal resolution of 500 ns. We characterize our microscope’s performance by measuring
the ensemble-averaged probability density of atoms within the unit cells of an optical lattice and observe
the dynamics of atoms excited into motion. This approach can be readily applied to image any atomic or
molecular system, as long as it hosts a three-level system.
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I. INTRODUCTION

High spatial and temporal resolution microscopy can
reveal the underlying physics, chemistry, and biology of a
variety of systems. Examples range from the study of atoms
on surfaces with atomic resolution scanning tunneling
microscopy [1] to the use of superresolution microscopy
to observe individual molecule dynamics within living cells
[2]. The field of quantum simulation with ultracold atoms
has emerged to study strongly correlated many-body
systems using precise control with light-atom interactions
[3]. This entails confining atoms, engineering their inter-
actions and potentials, and measuring their states with laser
light. Based on fluorescence and absorption, the inherent
imaging resolution is limited by diffraction. Bringing
superresolution microscopy to the field of quantum simu-
lation of condensed-matter systems with ultracold atoms
will allow new direct probes of the wave function in a
variety of many-body systems.
We demonstrate here the imaging of atoms with unprec-

edented spatial resolution approximately equal to 11 nm that
iswell below the diffraction limit. Our approach is based on a
technique to localize atomic excitation on a subwavelength
scale, first proposed by Agarwal and Kapale [4] and first
demonstrated byMiles et al. [5].We can directlymeasure the

atomic probability density optically within the unit cell of
a 1D optical lattice (scanning electron microscopy has been
used tomeasure such quantities with 150-nm resolution [6]),
in contrast to measuring site occupancies [3,7,8]. Far-field
microscopy at the nanoscale based on nonlinear optical
response is well established [2] to resolve molecular dyna-
mics inside biological samples. Using similar ideas, sub-
wavelength addressing [9] and localized excitation have been
proposed [10–16] and observed in atomic systems [5,17].
Based on the dark state associated with a three-level system
[5,9–14,16], we coherently shelve narrow slices of the wave
function in every unit cell of the lattice into one of the spin
states dictated by the local dark state.We selectively read out
the total population in that spin state, which is proportional
to the local probability density of the lattice wave function.
The working resolution (width of the slice) can be adjusted
by changing the dark-state composition. The coherent nature
of this approach allows us to measure on a timescale much
faster than the evolution of the wave function. Our setup
can be readily applied to current quantum gas experiments
[3]. By dispersively coupling the readout state to a cavity, as
suggested by Refs. [16,18], one could perform subwave-
length quantum nondemolition measurements.
The principle of our approach is illustrated in Fig. 1 and is

similar to Refs. [4,5,16,18]. Assuming adiabaticity, a three-
level atom [Fig. 1(a)] coupled by two spatially varying light
fields will stay in a dark state, which is decoupled from the
excited state jei. This dark state is a superposition of the two
ground states with spatially varying amplitudes:

jDðxÞi¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩcðxÞ2þΩ2

p

q ½ΩcðxÞjg1i−Ωpjg2i�: ð1Þ
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Here, we use a standing-wave control field ΩcðxÞ ¼
Ωc sinðkxÞ and homogeneous probe field Ωp, where
k ¼ 2π=λ, and λ is the wavelength of the light. For
Ωc ≫ Ωp, the resulting dark-state composition is predomi-
nantly jg1i away from the nodes of ΩcðxÞ, and jg2i near the
nodes where Ωp ≫ jΩcðxÞj. The probability density of jg2i
[Fig. 1(c)] coming from this nonlinear dependence on the
Rabi frequencies [Eq. (1)] is periodic and has narrow peaks
near the nodes

fðxÞ ¼ ϵ2

ϵ2 þ sin2ðkxÞ ; ð2Þ

where ϵ ¼ Ωp=Ωc. The fullwidth at halfmaximum(FWHM)
σ of the peaks provides a good metric for the resolution
within the unit cell λ=2. For Ωc ≫ Ωp (small ϵ), σ depends
linearly on ϵ: σ ≃ ϵλ=π, allowing resolution greatly exceed-
ing the diffraction limit. Starting with atoms in jg1i with
wave function ψðxÞ, we can adiabatically transfer a narrow
slice of atoms into jg2i. The wave-function probability
density jψðxÞj2 [Fig. 1(b)] can be determined by measuring
the population transferred to jg2i at different locations x
[Fig. 1(d)], yielding a signal

nðxÞ ¼
Z

jψðx0Þj2fðx0 − xÞdx0: ð3Þ

By deconvolving this signal with the probing function
fðxÞ, we can reconstruct jψðxÞj2.
We use stimulated Raman adiabatic passage (STIRAP)

[19] to transfer the selected slices of the wave function from
the state jg1i into jg2i. In order to accurately measure the
shape of the wave function, the STIRAP process must be
adiabatic with respect to the spin degree of freedom (d.o.f.)
[i.e., the dark-state composition given by Eq. (1)] but
diabatic with respect to the motional d.o.f. For small ϵ, the
shortest duration of the STIRAP is inversely proportional
to the Rabi frequencies. For typical trapped atoms experi-
ments, Rabi frequencies can be tens of megahertz, while the
motional dynamics is on the order of tens of kilohertz.

II. EXPERIMENTAL METHOD

We work with the three-level system in 171Yb consisting
of jg1i ¼ j1S0; F ¼ 1

2
; mF ¼ − 1

2
i, jg2i ¼ j1S0;F ¼ 1

2
;mF ¼

þ 1
2
i, and jei ¼ j3P1; F ¼ 1

2
; mF ¼ − 1

2
i (see Appendix A),

coupled by λ ¼ 556 nm light. The control field ΩcðxÞ is
formed by two counterpropagating σ−-polarized beams
Ωc1eikx and Ωc2e−ikx in the direction of the quantization
axis defined by a magnetic field along x̂, while the probe
field Ωp is a π-polarized traveling wave normal to the
control beams [20]. We prepare 171Yb atoms by sympatheti-
cally cooling them with 87Rb atoms [21]. After ramping up
the magnetic field to 36 mTand removing the Rb atoms, the
Yb atoms are optically pumped into jg1i with a final
population approximately equal to 2 × 105. We measure
jψðxÞj2 of spin-polarized Yb atoms loaded into either a
Kronig-Penney- (KP) type lattice of thin barriers, as
described in Ref. [20], or a regular sinusoidal lattice based
on the ac Stark shift of Ωc1;2 off-resonantly coupled to the
jg1i ↔ j3P1; F ¼ 3

2
; mF ¼ − 3

2
i transition, which lies out-

side the three-level system making up the dark state.
Our microscope is implemented as follows. We first

suddenly turn off the lattice potential VðxÞ that supports the
wave function to be probed by switching off the Ωc2 beam.

(a)

(b)

(c)

(d)

FIG. 1. Principle of our nanoscale atomic density microscope.
(a) Configuration of the control field ΩcðxÞ and probe field Ωp
coupling aΛ system composed of jg1i, jg2i, and jei. Population in
jg2i is measured via a cycling transition connecting the imaging
state jii. (b) Wave function density jψðxÞj2 in jg1i in the lattice of
interest VðxÞ. (c) The spin-state composition is transferred to jg2i
near the nodes of Ωcðx0 − xÞ with probability given by fðx0 − xÞ
(narrow red peaks) and jg1i elsewhere. The width of fðx0 − xÞ is
determined by the relative strength of the two light fields ϵ ¼
Ωp=Ωc [see Eq. (2)]. (d) fðx0 − xÞ maps jψðxÞj2 onto the
population in jg2i, nðxÞ, which can be selectively measured via
state-dependent imaging. By stepping through different positions
x and measuring nðxÞ, we can reconstruct jψðxÞj2.
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Next, we ramp on Ωp followed by Ωc2 with a different
phase, which adiabatically flips the spin from jg1i to jg2i
in the region tightly localized near the nodes of the shifted
Ωcðx0 − xÞ ¼ Ωc sin½kðx0 − xÞ�. The intensity profiles for
ramping these two beams are calculated to preserve
adiabaticity, ensuring atoms follow the spatiotemporal
dark state at all times. We then rapidly ramp off all
beams simultaneously in order to preserve the dark-state
composition. We measure the jg2i population via state-
selective absorption imaging. Scanning x in fine steps
at small ϵ allows us to map out the jψðxÞj2 with high
resolution.

III. RESULTS

We use our wave-function microscope to investigate
atoms in sinusoidal and KP lattices. We start by preparing
the atoms in the ground band of the lattice of interest, as
described in Appendix B. Figure 2(a) shows nðxÞmeasured
in a 140ER sinusoidal lattice using a calculated resolution
of 8.8 nm, along with nðxÞ in a KP lattice with 50ER

barriers using a calculated resolution of 17.6 nm. Here,
ER ¼ ℏ2k2=2m is the recoil energy, and m is the mass of
the atom. The different lattice potentials (sinusoidal vs
boxlike KP) give rise to different functional forms of the
wave function in the lattice [inset of Fig. 2(a)]. The
expected jψðxÞj2 is Gaussian for a deep sinusoidal lattice
and cosine for a KP lattice. The solid lines are the
calculated jψðxÞj2 using independently measured Rabi
frequencies including both the resolution due to finite slice
width as well as wave-function expansion over the 800-ns
measurement time. In Fig. 2(b), we show the FWHM w
of the ground-band jψðxÞj2 of the sinusoidal lattice as a
function of the lattice depth. The blue curve represents the
calculated width, which is in good agreement with the data.
The remaining discrepancy may result from trap inhomo-
geneities, the uncertainty of the Rabi frequencies, and
mechanical effects arising from the nonadiabatic potentials
due to the spatially varying dark state [20,22,23].
The fast STIRAP slicing process allows for observing

the wave-function dynamics. At our maximum Rabi
frequency of Ωc ¼ 2π × 90 MHz and ϵ ¼ 0.05, we can
maintain the adiabaticity condition for a STIRAP time of
500 ns. Figure 3(a) shows the dynamics of the wave
function in a sinusoidal lattice after a sudden shift in the
lattice position. The atoms are first adiabatically loaded into
a 140ER lattice. Then, the lattice position is diabatically
changed in 100 ns by 1=4 of the lattice spacing via the
phase of the Ωc1 lattice beam, which excites a “sloshing”
motion. We map out the evolution of the wave function
within the unit cell by holding the atoms in the shifted lattice
for incremental periods of time before probing. In Fig. 3(a),
we show the measured jψðxÞj2, which are in agreement with
the calculations.

The dynamics of the wave function after a sudden
change in the lattice depth is shown in Fig. 3(b). The
atoms are first adiabatically loaded into the ground
band of a shallow lattice (6ER). The depth of the lattice
is then suddenly increased to 140ER, which excites a
“breathing” motion of the atoms inside a unit cell. As
time increases, we see that the jψðxÞj2 breathes at a
frequency characterized by the band energies. At t ¼
3.5 μs and t ¼ 9.5 μs, jψðxÞj2 is focused to calculated
w0 ≃ 26 nm.
We estimate the spatial resolution of our microscope

by measuring the narrowest wave function jψðxÞj2 that
we create with the breathing-mode excitation. This con-
dition occurs at 9.5 μs where the calculated jψðxÞj2 has

(a)

(b)

(a)

(b)

FIG. 2. Measurements of the ground-state wave function
within the unit cell of an optical lattice with different shapes.
(a) The orange points show nðxÞ for atoms in a sinusoidal
lattice measured with ϵ ¼ 0.05. The green points represent
nðxÞ in a Kronig-Penney lattice measured with ϵ ¼ 0.1.
Number fluctuations between realizations result in number
uncertainties of 5%. The solid lines are calculations using
measured Rabi frequencies to determine the lattice depth
normalized to the same atom number. Inset: Schematic of
different lattice potentials and corresponding jψðxÞj2.
(b) FWHM w of nðxÞ in a sinusoidal lattice as a function
of the lattice depth. Black points show experimental data with
ϵ ¼ 0.05, and the blue line is a calculation including the 800-
ns measurement time. The error bars are 1 standard deviation
from the Gaussian fits.
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w0 ¼ 26.2þ1.6
−0.6 nm, where the uncertainty arises from the

uncertainty in the Rabi-frequency calibrations used to
determine the lattice depth. We measure nðxÞ at this time
with different resolution by varying ϵ, as shown in Fig. 4.
The measured width w of nðxÞ is plotted as the gray open
circles, which decrease and approach the expected value
for small ϵ. Following Eq. (3), by deconvolving the results
[nðxÞ] with the calculated wave function (jψðxÞj2) and
taking into account the 800-ns expansion time, we estimate
the intrinsic resolution σ for different ϵ, which is plotted as
the black closed circles. The blue solid line is the calculated
width of fðxÞ. The ultimate resolution is possibly limited
by mechanical effects arising from the sharp potential
associated with the dark state [20,22,23]. As the slice width
σ decreases, the total population in jg2i also decreases,
setting a practical limit on the usable resolution, as illustrated
by the wave-function measurements shown in the Fig. 4
upper panel. The smallest measured σ reaches 11.4þ2.0

−4.4 nm,

which could be improved with higher signal-to-noise ratio
and Rabi frequencies.

IV. CONCLUSION

We demonstrate superresolution imaging of atomic
wave-function probability density with a spatial resolution
of λ=50 and a temporal resolution of 500 ns. This imaging
technique (demonstrated here on an ensemble of atoms) can
be extended to single atoms by averaging over multiple
realizations. The dark-state-based technique can be applied
to image any atomic or molecular system as long as they
host a three-level system, including the alkali atoms that are
used in many experiments. Such high spatial and temporal
resolution microscopy provides a new tool to address
ultracold atom simulations of condensed-matter systems,
especially phenomena associated with higher momenta and
energies. For instance, the temporal resolution will allow us
to measure the rapid dynamic evolution of the wave
functions in periodically driven Floquet systems [24]. The
spatial resolution of the technique could allow one to probe
density fluctuations due to phonon and vortex excitations in
a nonlattice cold atom system, which can be the size of the
healing length (typically submicron) [25,26]. It is also useful

T T

FIG. 3. Wave-function dynamics within the unit cell of an
optical lattice. We excite the (a) sloshing motion and (b) breathing
motion of jψðxÞj2 appears to have a wrong scale in a 140ER-deep
sinusoidal lattice by suddenly changing either the position or the
depth of the lattice potential. nðxÞ is plotted at different hold times
[1 to 14 μs in steps of 1 μs for (a) and 1.5 to 9.5 μs in steps of 1 μs
for (b)] after the sudden change. The points are experimental
data with ϵ ¼ 0.05, and the blue curves represent calculations
of nðxÞ based on the independently measured lattice parameters.
Typical number uncertainties are 5% due to fluctuations from shot
to shot.

FIG. 4. Spatial resolution of the microscope. We create a
narrow wave function jψðxÞj2 (FWHM 26 nm) by exciting the
breathing motion of atoms in a deep sinusoidal lattice and
measure nðxÞ at the focus point [see Fig. 3(b)] as a function
of ϵ. The measured w from a Gaussian fit with a vertical offset to
the nðxÞ (see upper panel for typical wave-function measure-
ments) is plotted against ϵ as the gray open circles, with the error
bars showing 1 standard deviation from the fitting. These data are
then deconvolved with the calculated wave function jψðxÞj2 to
find the intrinsic resolution σ and plotted as the black closed
circles. The error bars are dominated by the systematic uncer-
tainties in the width of jψðxÞj2. The blue curve is the calculated
width of fðxÞ at different ϵ.
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in probing lattice systems with higher band population either
intentionally populated to exploit the orbital d.o.f. [27,28] or
due to band mixing from strong interactions [29]. As
demonstrated in Fig. 3, our subwavelength resolution
already allows us to distinguish the different atomic wave
functions trapped in lattices with different subwavelength
structure. Such a resolution will be critical in the study of
optical lattices with lattice constants λ=2N created through
stroboscopic techniques [30], which is advantageous for
studying many-body physics since the energy scale is N2

times larger than a typical λ=2 lattice. Finally, while the
imaging technique demonstrated here measures the wave-
function probability density, the coherence of the dark-state
selection process could allow for measurement of the local
wave-function phase as well.
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APPENDIX A: 171YB ATOM LEVEL STRUCTURE

We measure the Yb atoms by absorption imaging on the
1S0 − 1P1 transition with light at 399 nm generated by a
frequency-doubled laser system. We stabilize the seed of the
imaging laser (at 800 nm) via a scanning transfer cavity lock
[31,32] with the master laser locked to a saturated absorption
feature on the 85Rb j52S1=2; F ¼ 3i ↔ j52P3=2; F0 ¼ 3–4i
crossover signal. State selectivity is achieved by imaging in a
large magnetic field of 36 mTalong x̂, such that the resulting
440-MHz separation between the j6i and j7i Zeeman
sublevels of 1P1 is much larger than the linewidth Γ1P1

¼
2π × 27.9 MHz. The imaging beam propagates along x̂ with
σþ polarization relative to B⃗. We measure the population in
the jg2i hyperfine ground state by making the laser resonant
with its respective stretched state, jg2i ↔ j6i for 10 μs.
Optical pumping of atoms in jg1i into jg2i via j7i is
suppressed by a factor of over 3000 due to the 440-MHz
detuning and the short imaging time.
Figure 5 depicts the three hyperfine states that constitute

the Λ system consisting of jg1i; jg2i, and jei that we use to
generate the KP lattice and to probe the wave function of
arbitrary lattices. We create the off-resonant sinusoidal ac-
Stark-shift lattices using the jg1i ↔ j5i transition with the
lattice depth given by 3Ω2

cðxÞ=8ΔHFS. The effect of this off-
resonant lattice is negligible when the atoms are in the KP

lattice with Ωc ¼ 70 Γ and Ωp ¼ 10 Γ, where Γ ¼ 2π ×
182 kHz is the inverse lifetime of 3P1. The method we use
to calibrate our Rabi frequencies is detailed in Ref. [20].

APPENDIX B: EXPERIMENTAL SEQUENCE

Preparation and experimental sequence: Before the start
of each experimental sequence, the atoms are optically
pumped into jg1i.
Stage I: To simplify the study of the static and dynamics

properties of wave functions in lattices, we prepare our
atom cloud to fill only the ground band of the lattice of
interest. Since the Fermi energy of our atomic cloud is
approximately 3ER, adiabatic loading into the lattice will
have some population in the first excited band. We resolve
this issue by first loading atoms into a KP lattice with ϵ ¼
0.14 (Ωc1 ¼ Ωc2 ¼ 35 Γ, Ωp ¼ 10 Γ, and Δ ¼ 4 MHz)
[20] and then holding for 5 ms. Atoms in higher bands of
the KP lattice have a shorter lifetime and are lost from the
trap, effectively removing atoms in the higher bands.
Stage II: In this stage, we adiabatically transfer atoms

from the ground band of the KP lattice into the ground band
of an ac-Stark-shift lattice in 10 ms.Δ is ramped down to 0,
which is important in achieving the maximum speed while
adiabatically following the dynamic dark state in stage IV.
Stage III: In this stage, we excite dynamics in the lattice.

In Fig. 6(c), the phase of the Ωc1 beam is ramped to 90° in
100 ns, so as to diabatically shift the position of the lattice
by λ=8 which induces sloshing dynamics. In Fig. 6(d), the
lattice depth is suddenly increased from 6ER to 140ER,

FIG. 5. Level structure of the 1S0, 3P1, and 1P1 manifolds of
171Yb: Δ is the single-photon detuning and ΔHFS ∼ 6 GHz is the
3P1 hyperfine splitting.
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and the atoms are held in the deep lattice for different times
(1.5 to 9.5 μs) to study the breathing motion.
Stage IV: In this stage, we measure the wave function.

First, Ωc2 is suddenly turned off to 0, while Ωc1 is set to
250 Γ. Then, the Ωp beam is suddenly turned on to its
desired value. Because of the large energy separation of
125 Γ (Ωc1 ¼ 250 Γ and Ωp ¼ Ωc2 ¼ 0) between the dark
and bright states, the adiabatic following of the dark state is
guaranteed during the turn-on of the Ωp beam. Then Ωc2

beam is turned on with a different phase ϕc2 implemented
by changing the phase of the rf drive to the acousto-optic
modulator (AOM), with the amplitude being ramped up
to 250 Γ with the optimal waveform so as to preserve the
adiabaticity during the ramp. By scanning ϕc2 from 0°
to 360°, we change the position of the node of
ΩcðxÞ ¼ 500Γ cosðkxÞ, thereby mapping out the probabil-
ity amplitude of atoms in each spatial slice of the wave
function.
Stage V: Finally, the lattice beams are ramped off

simultaneously in 100 ns by switching off the rf drive to
the AOMs. Since the dark-state composition depends
only on the ratio ðΩc1 þΩc2Þ=Ωp and not on the absolute
magnitude of the Rabi frequencies, simultaneous ramp-off

of the lattice beams preserves the dark-state composition
until the atoms are imaged.

APPENDIX C: HARDWARE CONTROL

In order to generate the experimental sequences described
earlier, we need to have fine, high-bandwidth control over the
amplitude and phase of the light fields Ωc1, Ωc2, and
Ωp. This control is achieved by using a home-built field-
programmable-gate-array- (FPGA; Spartan 6) controlled
direct-digital-synthesis- (DDS; AD9910) based rf signal
generator. We use three such devices to drive three AOMs
for the light fields. Phase coherence between the light fields is
ensured by having the devices be clocked by the same
10-MHz clock source and having the light fields be derived
from the same laser. Each device generates an 80-MHz rf
carrier signalwith arbitrary amplitude andphase and imprints
that onto the light via its respective AOM. The DDS can
update the phase of the rf signal every 4 ns. The desired
amplitude waveform (AW) is loaded into the local RAM of
the FPGA of the device and is updated at a maximum update
rate of 8 ns. The maximum length of the AW pulse is
approximately 256 μs when updated every 8 ns.

(a)

(d)

(b) (c)

FIG. 6. Experimental sequences. (a) Probing the ground-state wave function of a sinusoidal lattice. (b) Probing the ground-state wave
function of a KP lattice. (c) Probing the dynamics after a sudden change in the lattice position. (d) Probing the dynamics after a sudden
change in lattice depth. The drawings are not to scale.
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APPENDIX D: OPTIMAL AMPLITUDE
WAVEFORM FOR STIRAP

During stage IV, we adiabatically transfer atoms from j1i
to j2i near the node of ΩcðxÞ via STIRAP [19]. For
an ideal Λ system, the local adiabatic criterion is given
by Ref. [19] as Ωrms ≫ jΩc

_Ωp − _ΩcΩpj=Ω2
rms, where

Ωrms¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

cþΩ2
p

q
(at Δ¼0) is the energy gap between

the dark and bright eigenstates and the rhs is the off-
diagonal coupling between them. We define an adiabaticity
parameter r,

Ωrms ¼ r
jΩc

_Ωp − _ΩcΩpj
Ω2

rms
: ðD1Þ

A larger value of r implies a more adiabatic but slower
transfer. The equation is solved to give an optimal shape of
Ωc2 near the node of ΩcðxÞ (Ωc1 and Ωp are kept constant
here) for stage IV:

Ωc2ðtÞ ¼ Ωc1 −Ωp

�
Ωc1ffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

c1þΩ2
p

p − Ωpt
r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
Ωc1ffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

c1þΩ2
p

p − Ωpt
r

�
2

r : ðD2Þ

The time it takes to finish the Ωc2ðtÞ ramp is

Tr ¼
r
Ωp

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ϵ2

p : ðD3Þ

For a typical value of r ¼ 15, Ωc1 ¼ 250 Γ, and Ωp ¼
25 Γ, Tr is 0.52 μs; see Fig. 7. For a given spatial resolution
determined by ϵ, more available laser power will reduce Tr
and increase the temporal resolution.
We experimentally investigate the minimum r required

to ensure adiabatic following of the dynamic dark state.
We do this by keeping r fixed and measuring the temper-
ature of the cloud after STIRAP pulses. If the adiabaticity is
not well satisfied, the nonzero probability of atoms being
in the excited state jei leads to scattering which increases
the temperature of the atoms. To increase the sensitivity of
the measurement, we apply ten successive STIRAP pulses.
This study is performed with only one control beam Ωc2

and the probe beam Ωp. In each pulse, Ωc2 is ramped up
from 0 to 250 Γ and then ramped down to 0 following the
optimal waveform described by Eq. (D1). After ten cycles,
the temperature of the cloud is measured, and the results
are shown in Fig. 8(a). One can see that beyond a certain
value of r, the STIRAP process becomes adiabatic; i.e.,
the temperature is independent of r, which occurs at about
r ¼ 15 for Ωp ¼ 50 Γ; 25 Γ. Below r ¼ 15, the local
adiabaticity criterion breaks down. During the probe stage
in Fig. 6, we use r ¼ 15 in Eq. (D2) to calculate the
optimal AWs.
The energy gap between the dark and bright eigenstates

increases with increasing Ωrms, which reduces Tr needed
to ensure adiabaticity. We study this effect by keeping the
ratio of Ωp=Ωc2 ¼ 0.2 constant while Ωrms is varied. As
shown in Fig. 8(b), with larger Ωrms, faster ramp speed can
be achieved while still being adiabatic.

APPENDIX E: PRESERVING THE DARK-STATE
COMPOSITION DURING RAMP-OFF

The ramp-off stage of the lattice beams is crucial for our
measurement since it must preserve the dark-state compo-
sition generated during the probing stage. We achieve this
requirement by ramping down the light fields simultane-
ously while maintaining a fixed ratio between the Rabi
frequencies ΩciðtÞ=ΩpðtÞ, where i ¼ 1, 2. The dark-state
composition is thus preserved, as it depends only on the
ratio and not on the absolute magnitudes of the Rabi
frequencies. For the typical Rabi frequencies we use in the
experiments, the relative delay between the light fields

FIG. 7. The optimal amplitude waveform for Ωc2ðtÞ for
Ωc1 ¼ 250 Γ, Ωp ¼ 25 Γ.

FIG. 8. (a) The temperature of the atoms after ten complete
STIRAP pulses for different values of r and Ωp and (b) different
values of Ωrms and Tr
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needs to be less than 20 ns to preserve the dark-state
composition. The ramp-off must be diabatic with respect to
the mechanical d.o.f. of the wave function. This is
guaranteed by turning off the rf drive to the AOMs
simultaneously in 100 ns.
Experimentally, simultaneous turn-off of the light fields

between different AOMs is not guaranteed, as delays may
exist due to the laser light hitting the AOM crystals at
different distances from their respective piezoelectric trans-
ducers. With our best alignment of the AOMs, we reduce
the delay of the light fields to within 60 ns of each other.
This remnant delay at the atoms is compensated by delaying
the digital trigger that turns off the rf drive to an AOM. We
accurately measure the turn-off delays between the light
fields at the atoms using the method shown in Fig. 9(a).
Sweeping tshift of the digital trigger, thereby changing Δt ¼
tshift − tdelay, we measure the atom number in jg2i using
state-selective imaging. We are able to change tshift at
picosecond timescales using a delayed-pulse generator
(SRS DG535). When Δt < 0, the spin composition of
the dark-state wave function is jg1i. But as Δt ≥ 0, the
dark-state composition starts to become predominantly jg2i
with increase in Δt as shown in Fig. 8(b). By fitting a line to
the data, we get the time at which the dark-state spin
composition just starts to change from jg1i to jg2i. The

jg2i component of the dark state is close to 0 for the Rabi
frequencies used in the measurement when Δt ¼ 0. By
measuring these delays for each pair of beams Ωc1 and Ωp,
Ωc2 andΩp,we can compensate themvia adjusting the lengths
of the BNC cables of the digital trigger to the rf sources.
Another approach to ensure that the dark-state compo-

sition does not change is to turn off the light fields
diabatically with respect to the spin d.o.f. of the dark-state
wave function. As the Rabi frequencies of the light fields
are in the range of hundreds of megahertz, the turn-off time
must be less than 10 ns. It is challenging to achieve such
turn-off times with AOMs, but one could use electro-optical
modulators instead.

APPENDIX F: THEORY AND CALCULATION

The eigenfunctions of atoms in an optical lattice are
given by the Bloch ansatz as ϕqðxÞ ¼ eiqxuqðxÞ, where
uqðxÞ ¼ uqðxþ aÞ, q ∈ ½−k; k� is the quasimomentum, and
a is the periodicity of the lattice. The field operator for a
spin jσi;Ψ†

σðxÞ, and the total field operator for a spin-1=2
particle in a lattice Ψ†

SðxÞ is given as [33]

Ψ†
σðxÞ ¼

Xq¼k

q¼−k
ϕ�
qðxÞc†qσ;

Ψ†
SðxÞ ¼ ½Ψ†

jg1iðxÞ;Ψ
†
jg2iðxÞ�T;

where fcqσ; c†q0σ0g ¼ δqq0δσσ0 .
Before stage IV, all atoms are in jg1i as the trivial dark

state which is represented by the total field operator
Ψ†

SðxÞ ¼ Ψ†
jg1iðxÞð1; 0ÞT . During stage IV, the adiabatic

preparation of the dark-state wave function is given as

Ψ†
SðxÞ ¼ Ψ†

jg1iðxÞ
�

s sinðkxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2sin2ðkxÞ þ 1

p ;
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2sin2ðkxÞ þ 1
p

�
T
;

where s ¼ 1
ϵ ¼ ðΩc1 þ Ωc2Þ=Ωp.

The measurement involves probing the probability den-
sity of atoms in jg2i averaged over the filled ground band
of the optical lattice (jGBi) using state-selective imaging.
The observable that we measure is therefore,

hg2jhGBjΨ†
SðxÞΨSðxÞjGBijg2i

¼
�

1

s2sin2ðkxÞ þ 1

� Xq¼k

q¼−k

Xq0¼k

q0¼−k

ϕ�
qðxÞϕq0 ðxÞ

× hGBjc†qjg1icq0jg1ijGBi

¼
�

1

s2sin2ðkxÞ þ 1

� Xq¼k

q¼−k
jϕqðxÞj2

¼ fðxÞ
Xq¼k

q¼−k
jϕqðxÞj2:

(a)

(b)

FIG. 9. (a) Optical pulse sequence used to optimize the
temporal overlap between the Ωci and Ωp light fields. (b) The
population of the atoms in the jg2i state as a function of tshift with
Ωc1 ¼ 250 Γ and Ωp ¼ 50 Γ.
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Therefore, the measured density distribution within a
unit cell is the convolution of the actual density distributionPq¼k

q¼−k jϕqðxÞj2 and the probing function fðxÞ.
We solve for the band structure of two types of lattices:

the KP lattice and the sinusoidal ac-Stark-shift lattice.
Using the Bloch ansatz, the Schrödinger equation can be
written as

�
ℏ2

2m
ð−iℏ∂x þ qÞ2 þ VðxÞ

�
uqðxÞ ¼ ϵðqÞuqðxÞ:

The Schrödinger equation can be solved numerically by
Fourier expansion of uqðxÞ into plane waves

uqðxÞ ¼
XN
n¼−N

cn;qeinkx;

where n ∈ ð0; 1; 2;…Þ is the band index and diagonalizing
the matrix equation resulting in this basis. Similarly, the
time dependence of the wave function after suddenly
changing the lattice can be calculated by solving the
time-dependent Schrödinger equation with appropriate
initial conditions.
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