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We introduce a new class of states for bosonic quantum fields which extend tensor network states to
the continuum and generalize continuous matrix product states to spatial dimensions d ≥ 2. By
construction, they are Euclidean invariant and are genuine continuum limits of discrete tensor network
states. Admitting both a functional integral and an operator representation, they share the important
properties of their discrete counterparts: expressiveness, invariance under gauge transformations,
simple rescaling flow, and compact expressions for the N-point functions of local observables. While
we discuss mostly the continuous tensor network states extending projected entangled-pair states, we
propose a generalization bearing similarities with the continuum multiscale entanglement renormal-
ization ansatz.
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I. INTRODUCTION

Tensor network states (TNSs) provide an efficient para-
metrization of physically relevant many-body wave func-
tions on the lattice [1,2]. Obtained from a contraction of
low-rank tensors on so-called virtual indices, they eco-
nomically approximate the states of systems with local
interactions in thermal equilibrium. Their number of
parameters scales only polynomially with the lattice size
[3,4], circumventing the exponential growth of the Hilbert
space dimension. TNSs have led to powerful numerical
methods to compute the physical properties of complex
system [5–7], most notably in one spatial dimension d ¼ 1,
where matrix product states (MPSs) [8], the simplest
incarnation of TNSs, are at the basis of what is arguably
the most successful method to describe strongly correlated
systems [9–11]. In higher dimensions d ≥ 2, accurate
results [12] have also been obtained using projected
entangled-pair states (PEPSs) [13], a natural generalization
of MPSs. Another family of TNSs, the multiscale renorm-
alization ansatz (MERA) [14], has proved well suited to
describe scale-invariant states [15,16] appearing in critical
phenomena.
Beyond numerical computations, TNSs provide impor-

tant insights into the nature of many-body quantum systems

and have helped describe and classify their physical proper-
ties. By design, their entanglement obeys the area law
[17–19], which is a fundamental property of low-energy
states of systems with local interactions. They enable a
succinct classification of symmetry-protected [20–23] and
topological phases ofmatter [24,25]. TNSs also have a built-
in bulk-boundary correspondence [26], which makes close
connections to physical phenomena appearing in exotic
materials [27,28]. Finally, they can be used to build toy
models illustrating the holographic principle and the cel-
ebrated AdS/CFT correspondence [29–31].
For regular spin lattices, PEPSs assign a tensor to each

lattice site, with 2z virtual and one physical (spin) indices,
where z is the coordination number. The virtual indices are
contracted according to the lattice geometry, yielding a
wave function for the spin degrees of freedom. This
description is particularly useful in translationally invariant
systems, as this symmetry may simply be imposed by
choosing the same tensor on each site. For MERA [14,32],
a treelike structure of two types of tensors is used. In both
cases, the whole many-body wave function is determined
by one or a few tensors, which encode all the physical
properties.
An important challenge in the theory of TNS is the

generalization from lattice to continuous systems. Such an
extension would allow the direct study of quantum field
theories, without the need for a prior breaking of spatial
symmetries with a discretization. Furthermore, the con-
tinuum provides a whole range of exact and approximate
analytic techniques (such as exact Gaussian functional
integrals, saddle-point approximations, or diagrammatic
expansions) that have no obvious discrete counterparts and
that could provide useful additions to the TNS toolbox.
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A natural way to carry out such a program is to simply
take the continuum limit of a TNS, by letting the lattice
spacing tend to zero while appropriately rescaling the
tensors. In fact, this task has been carried in one spatial
dimension, d ¼ 1, where it yields continuous matrix
product states (CMPSs) [33,34]. In higher dimensions,
however, the situation does not seem trivial. Naive exten-
sions of CMPSs have a preferred spatial direction and break
Euclidean symmetries [35]. In Ref. [35], a proposal for
CPEPS was put forward to overcome such a limitation,
but the resulting state was no longer obtained from the
continuum limit of a TNS. Thus, so far there seems to be no
fully satisfactory way of extending TNSs to the continuum
in d ≥ 2.
In this article, we propose a definition of continuous

tensor network states (CTNSs) that naturally extends TNSs
to the continuum. We obtain them as a genuine continuum
limit of TNSs but manage to preserve Euclidean invariance.
As in previous works [35–37], we exploit the similarity
between a tensor contraction over the indices lying on the
links of a tensor network and a functional integral over a
field living on the continuum limit of this mesh. The key
difference lies in the way the continuum limit is taken in
higher dimensions: As we argue, the d ¼ 1 case of CMPSs
is too peculiar to be directly extended.
The first definitionofCTNSwepropose inSec. II takes the

form of a functional integral over auxiliary scalar fields
as advertised. From this definition, which makes local
Euclidean invariance manifest, we derive an operator repre-
sentation similar to the one used for CMPSs. Importantly, we
show in Sec. III how this ansatz can be obtained from a
continuum limit of a discrete TNS.We then study some of its
properties reminiscent of the discrete: its ability to approxi-
mate (possibly inefficiently) all states (Sec. IVA), its
redundancy under some so-called gauge transformations
(Sec. IV B), which play a crucial role for PEPSs, its flow
under scaling transformations (Sec. IV C), and its CMPS
approximation in some carefully chosen limit (Sec. IVD).
We then proposevariousmethods to carry computationswith
Gaussian and non-Gaussian CTNSs (Sec. V). While most of
our approach is aimed at the continuum limit of PEPSs, we
finally generalize it to MERA-like states (and more exotic
TNSs) in arbitrary dimensions by including a metric and
restricting physical fields to a boundary (Sec. VI).

II. CONTINUOUS TENSOR NETWORK STATES

We start by giving two equivalent definitions of con-
tinuous tensor network states, leveraging a functional
integral and an operator representation. Our objective at
this stage is only to provide a definition of a class of states
for bosonic quantum fields, with only a crude intuition for
why such an object could indeed be a good definition of a
CTNS. We forgo the derivation of this CTNS from a class
of discrete tensor networks to the following section.

A. Functional integral representation

1. State definition

We begin with the functional integral representation. It
will be the most direct to derive from the discrete and
makes Euclidean symmetries manifest.
Definition 1 (functional integral formulation).—A CTNS

of a bosonic quantum field on a domain Ω ⊂ Rd with
boundary ∂Ω is a state jV; B; αi parametrized by two
functions V and α: RD → C and a boundary functional B:
L2ð∂ΩÞ → C defined by the functional integral on an
auxiliary D-component field ϕ:

jV; B; αi ¼
Z

DϕBðϕj∂ΩÞ exp
�
−
Z
Ω
ddx

1

2

XD
k¼1

½∇ϕkðxÞ�2

þ V½ϕðxÞ� − α½ϕðxÞ�ψ†ðxÞ
�
j0i; ð1Þ

where j0i is the physical Fock vacuum state, ½ψðxÞ;
ψ†ðyÞ� ¼ δdðx − yÞ, and ϕ ¼ ½ϕk�Dk¼1. The functions α
and V may depend explicitly on the position.
The auxiliary D-component field ϕ, which is integrated

over in the functional integral, is the continuous equivalent
of the auxiliary bond indices that are contracted in tensor
network states (see Fig. 1). This intuition is made more
precise in the next section. For this reason, we call D the
bond-field dimension. As we see in Sec. IV, the bond-field
dimension D bears similarities with the bond dimension χ
of discrete tensor network states.
If Ω is Rd or a torus with periodic boundary conditions,

B can simply be set to 1. In that case, the state and its
associated properties depend only on V and α, in the same
way a TNS depends only on local tensors. If V and α do not
depend explicitly on x, the CTNS describes a translation-
ally invariant state. More generally, if ∂Ω ≠ ∅, the boun-
dary functional could induce, e.g.,
(1) Dirichlet boundary conditions.—Bðϕj∂ΩÞ ∼ δðϕj∂ΩÞ

fixing ϕj∂Ω ¼ 0 in the functional integral;
(2) Neumannboundary conditions.—Bðϕj∂ΩÞ∼δð∇ϕ·nÞ

fixing ∇ϕ · nj∂Ω ¼ 0, where n is normal to ∂Ω; or

FIG. 1. Functional integral representation. In the discrete (left),
a tensor network state is obtained from a contraction of auxiliary
indices connecting the elementary tensors with each other and
with a boundary tensor. In the continuum (right), the contraction
is replaced by a functional integral (1), the auxiliary indices by
fields ϕ, and the boundary tensor by a boundary functional B.
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(3) something more general, given, e.g., by a quasilocal
functional:

Bðϕj∂ΩÞ¼ exp

�
−
I
∂Ω

dd−1xL½ϕðxÞ;∇ϕðxÞ�
�
; ð2Þ

where L is a function from Rðdþ1ÞD to C. This latter
option is generated naturally when we discuss gauge
invariance in Sec. IV B.

We rewrite expression (1) more explicitly as a sum over
unnormalized field-coherent states. Introducing the mass-
less free field probability measure dμðϕÞ for the auxiliary
field:

dμðϕÞ ¼ Dϕ exp

�
−
1

2

Z
Ω
ddx

XD
k¼1

½∇ϕkðxÞ�2
�

ð3Þ

and a complex amplitude AVðϕÞ:

AVðϕÞ ¼ Bðϕj∂ΩÞ exp
�
−
Z
Ω
ddxV½ϕðxÞ�

�
ð4Þ

yields

jV; B; αi ¼
Z

dμðϕÞAVðϕÞjαðϕÞi; ð5Þ

where jαðϕÞi ¼ exp fRΩ ddxα½ϕðxÞ�ψ†ðxÞgj0i is an unnor-
malized field-coherent state. Hence, just like CMPSs in
dimension 1, CTNSs are a generalization of field-coherent
states. The latter are obtained, e.g., if AVðϕÞ is only non-
zero for a given ϕ (for an infinitely deep V) or, in the
homogeneous case, if α is constant.

2. N-particle wave function

A generic state jΨi in the bosonic Fock space
F ½L2ðRd;CÞ� can be expanded into a sum of n particle
wave functions φn:

jΨi ¼
Xþ∞

n¼0

Z
Ωn

dx1…dxn
φnðx1;…; xnÞ

n!
ψ†ðx1Þ…ψ†ðxnÞj0i;

ð6Þ

where φn is a completely symmetric function of its
coordinates. Simply expanding the exponential of
Eq. (1) gives, for the CTNS jV; B; αi,

φnðx1;…; xnÞ ¼
Z

dμðϕÞAVðϕÞα½ϕðx1Þ�…α½ϕðxnÞ�: ð7Þ

It provides an equivalent definition of the CTNS.

3. Correlation functions

A state is also fully characterized by its (equal time)
correlation functions. To compute them, we first introduce
the generating functionals for real sources j0, j:

Zj0;j ¼
hV;B;αjexpðRΩ j0 ·ψ†ÞexpðRΩ j ·ψÞjV;B;αi

hV;B;αjV;B;αi ;

Z̃j0;j ¼
hV;B;αjexpðRΩ j ·ψÞexpðRΩ j0 ·ψ†ÞjV;B;αi

hV;B;αjV;B;αi : ð8Þ

They generate the normal-ordered and anti-normal-ordered
correlation functions, respectively. For example, it is
straightforward to verify that

hψ†ðxÞψðyÞi ≔ hV;B; αjψ†ðxÞψðyÞjV; B; αi
hV; B; αjV; B; αi ð9Þ

¼ δ

δj0ðxÞ
δ

δjðyÞZj0;j

����
j;j0¼0

: ð10Þ

Using the formula for the overlap of (unnormalized) field-
coherent states,

hβjαi ¼ exp

�Z
Ω
dxβ�ðxÞαðxÞ

�
ð11Þ

and writing N ¼ hV; B; αjV; B; αi, we get

Z̃j0;j¼
1

N

Z
dμðϕ0ÞdμðϕÞBðϕÞB�ðϕ0Þ

×exp

�
−
Z
Ω
V�½ϕ0�þV½ϕ�−ðα�½ϕ0�þjÞðα½ϕ�þj0Þ

�
:

ð12Þ

We observe an important fact, which is that the function α
appears squared; hence, an α quadratic in the field already
brings non-Gaussianities. To compute Zj0;j, one applies the
Baker-Campbell-Hausdorff (BCH) formula to Eq. (8) to
push annihilation operators to the right and get back to a
computation of field-coherent state overlaps. We obtain

Zj0;j ¼
1

N

Z
dμðϕ0ÞdμðϕÞBðϕÞB�ðϕ0Þ

× exp

�
−
Z
Ω
V�½ϕ0ðxÞ� þ V½ϕ� − α�½ϕ0� · α½ϕ�

− jα½ϕ� − j0 · α�½ϕ0�
�
; ð13Þ

hence the same as Eq. (12) but for the removal of the
product j · j0, which is responsible for the divergent equal
point contributions upon functional differentiation.
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B. Operator representation

1. State definition

We now provide an equivalent operator representation
of CTNSs. For simplicity, we restrict ourselves to domains
of Rd that can be split into Cartesian products Ω ¼
½−T=2; T=2� × S, where ∂S ¼ ∅. This restriction is not
strictly necessary but substantially simplifies the definition.
Definition 2 (alternative operator formulation).—For a

domain Ω that can be written as a Cartesian product
Ω ¼ ½−T=2; T=2� × S, we write x ¼ ðτ;xÞ, where τ ∈
½−T=2; T=2� and x ∈ S. A CTNS is then defined as

jV;B;αi

¼ tr

�
B̂T exp

�
−

ZT=2

−T=2

dτ
Z
S
dx

XD
k¼1

�½π̂kðxÞ�2
2

þ ½∇ϕ̂kðxÞ�2
2

�

þV½ϕ̂ðxÞ�− α½ϕ̂ðxÞ�ψ†ðτ;xÞ
��

j0i; ð14Þ

where T is the τ-ordering operator and ϕ̂kðxÞ and π̂kðxÞ are
k-independent canonically conjugated pairs of (auxiliary)
field operators: ½ϕ̂kðxÞ; ϕ̂lðyÞ� ¼ 0, ½π̂ðxÞk; π̂lðyÞ� ¼ 0, and
½ϕ̂kðxÞ; π̂lðyÞ� ¼ iδk;lδd−1ðx − yÞ. These operators act on
Haux ¼ F ½L2ðSÞ�D, i.e., D copies of a bosonic Fock space
on a d − 1-dimensional space. The trace is taken over this
auxiliary Hilbert space. As before, V and α may depend on
x and τ.
The operator B̂ acts on Haux and fixes the boundary

conditions; e.g., B̂ ¼ 1 encodes periodic boundary con-
ditions on the coordinate τ. Another natural option is to take
B̂ ¼ jinihoutj, which corresponds to the situation in Fig. 2.
Definitions 1 and 2 are equivalent for this subclass of

domains. The proof is straightforward. One just applies the
techniques of standard quantum field theory (QFT) text-
books to go from operator to functional integral represen-
tations with τ ¼ it (see, e.g., Refs. [38,39]). Mainly, one
discretizes the τ-ordered product in Eq. (14) into a finite
product of terms. One then inserts resolutions of the

identity in the field basis jϕi at every time step Δτ and
writes each resulting overlap in the conjugate momentum
basis jπi. Going back to the continuum limit yields a
phase space functional integral which reduces to the
formula of Eq. (1) upon Gaussian integration of the
conjugate momenta π.
The boundary operator of Eq. (14) is related to the

boundary functional of Eq. (1) by

BðϕÞ ¼ hϕinjB̂jϕouti; ð15Þ
where jϕouti and jϕini are eigenstates of the auxiliary field
operators ϕ̂ðxÞ. The auxiliary field ϕ decomposes into
ϕ ¼ ϕin þ ϕout, where ϕin (respectively, ϕout) has support
on ∂Ωin (respectively, ∂Ωout) with ∂Ω ¼ ∂Ωin ∪ ∂Ωout.
As before, we propose a repackaging of formula (14).

Introducing the Hamiltonian density HðxÞ ¼ H0ðxÞ þ
V½ϕ̂ðxÞ� with H0ðxÞ ¼

P
D
k¼1f(½π̂kðxÞ�2 þ ½∇ϕ̂kðxÞ�2)=2g

yields

jV;B; αi ¼ tr
�
B̂T exp

�
−
Z

T=2

−T=2
dτ

Z
S
dxHðxÞ

− α½ϕ̂ðxÞ�ψ†ðτ;xÞ
��

j0i: ð16Þ

This equation is a straightforward extension of the CMPS
definition [33] (recalled in Sec. IV D) with Q̂ ∼ −HðxÞ
and R̂ ∼ α½ϕ̂ðxÞ�.

2. N-particle wave function

The N-particle wave function φn defined in Eq. (6) can
also be computed in the operator representation. For
−T=2 < τ1 < � � � < τn < T=2, we get, expanding the
τ-ordered exponential (14) into an infinite product,

φn¼ tr½B̂ĜT=2;τn α̂ðxnÞĜτn;τn−1 α̂ðxn−1Þ…α̂ðx1ÞĜτ1;T=2� ð17Þ

with α̂ðxnÞ ¼ α½ϕ̂ðxnÞ� and Ĝu;v ¼ T exp½− R
u
v dτ ×R

S dxHðxÞ�. As for CMPSs [33], we interpret Ĝ as a
propagator and α̂ as a scattering matrix creating a particle. It
is the very specific form of H and, hence, of Ĝ that is
responsible for the Euclidean symmetries of the resulting
state. Generalizing CMPSs starting directly from Eq. (17)
would make it hard to guess an appropriate expression
for Ĝ.
Note that Eq. (17) amounts to taking as the wave

function a correlation function of auxiliary quantum fields,
which is similar in spirit with the Moore-Read states [40]
used for Hall physics or with the infinite matrix product
states [41] used for critical spin chains.

3. Correlation functions

Finally, we provide an expression for the generating
functionals Zj0;j Z̃j0;j in the operator representation.

FIG. 2. Operator representation. Tensor networks in d ≥ 2 can
be defined through an auxiliary dynamics in d − 1 dimensions. In
the continuum, the physical d-dimensional quantum field
jV; B; αi is obtained through a joint nonunitary evolution
[Eq. (14)] with an auxiliary d − 1-dimensional quantum
field jauxτi.
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Exploiting the operator definition of the CTNS (14) and
expanding the τ-ordered exponential into an infinite prod-
uct of infinitesimal exponentials, we get

Z̃j0;j ¼ tr

�
B ⊗ B�T exp

�Z
T=2

−T=2
T j0j

��
ð18Þ

with the transfer matrix (with sources)

T j0j ¼
Z
S
−H ⊗ 1 − 1 ⊗ H� þ ðα½ϕ̂� þ j0Þ ⊗ ðα½ϕ̂�� þ jÞ:

ð19Þ

Using as before the BCH formula yields

Zj0j ¼ tr

�
B ⊗ B�T exp

�Z
T=2

−T=2

�
T j0j −

Z
S
j · j0

���
:

ð20Þ

The functional derivatives can then be carried explicitly,
and one obtains e.g., for −T=2 < τ2 < τ1 < T=2,

hψ†ðx1Þψðx2Þi ¼ trfB ⊗ B� ·MT=2;τ1 · ½1 ⊗ α̂�ðx1Þ�
·Mτ1;τ2 · ½α̂ðx2Þ ⊗ 1� ·Mτ2;−T=2g ð21Þ

with the map Mu;v ¼ T exp½R u
v T � and the transfer matrix

T ≔ T 00. More generally, correlation functions are given by
the trace of a succession of propagators M followed by
operator insertions of α ⊗ 1 (respectively, 1 ⊗ α�) in the
positions corresponding to ψ (respectively, ψ†).

III. LINK WITH DISCRETE
TENSOR NETWORK STATES

A. (Discrete) tensor network states

We start with a very brief reminder on TNSs, recalling
only their elementary definition. For an understanding of
their efficiency in representing quantum systems of physi-
cal interest, we direct the reader to the relevant literature
(e.g., Refs. [42,43], and references therein).
TNSs are variational ansatz for many-body wave func-

tions that take the form of a contraction of local tensors.
The simplest example, in spatial dimension d ¼ 1, is
provided by MPSs. For a translation-invariant quantum
spin-1=2 chain with N sites, a generic state reads

jψi ¼
X

i1;…;iN¼f−1;1gN
ci1;…;iN ji1i ⊗ � � � ⊗ jiNi; ð22Þ

where the wave function ci1;…;iN contains 2N complex
parameters. A MPS is an economical ansatz for this wave
function:

ci1;…;in ¼ tr½Ai1…AiN �; ð23Þ

where A−1 and A1 are two χ × χ matrices. These matrices
contain the parameters which allow one to vary the state.
Their size χ, called the bond dimension, encodes the depth
of the variational class and upper bounds the amount of
spatial entanglement that can be carried by the state.
The two matrices can be be collected into a 3-index

tensor ½Ak;l
i �k;l¼1…χ

i¼�1 written graphically:

ð24Þ

where i is the physical index and k and l are so-called bond
indices. Graphically, the corresponding wave function c
can be written

ð25Þ

where joint legs of the tensor A denote a summation on the
corresponding index, associated with the matrix multipli-
cation and subsequent trace in Eq. (23). This representation
makes it natural to generalize matrix product states to
PEPSs [13] in arbitrary dimensions, e.g., in d ¼ 2 for
N × N sites:

ð26Þ

This latter object, in general d, is what the CTNS defined in
Eqs. (1) or (14) aims to extend to the continuum.

B. Constructing CTNSs

Our objective is to show how CTNSs can be obtained
from a limit of a discrete TNS. To motivate this discrete
ansatz, we first provide heuristics for why its main
characteristics seem to be required. Mainly, we aim to
justify (i) why an infinite bond dimension is needed and
(ii) why the trivial tensor around which we expand is of the
form we postulate.
The first point is a scaling argument. We ask for a strong

notion of continuum limit: We require the discrete tensor to
be approximately stable by fine graining to the UV.
Namely, the discrete ansatz needs to be (at least approx-
imately) expressible as a contraction of tensors with the
same form but different parameters. Each blocking multi-
plies the physical dimension by 2d, which is why in the
continuum limit one obtains a field theory on the physical
degrees of freedom. But each blocking also multiplies the
bond dimension by 2d−1 (see Fig. 3). Hence, for d > 1, the
bond dimension is increased when zooming out and
decreased when zooming in. The only way to make the
class of states considered approximately stable is for the
bond dimension to be infinite. Notice in this respect that
the d ¼ 1 case allows finite bond dimensions even in the
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continuum limit [33,34]. It will be important to see if this
peculiarity can be recovered in some appropriate limit in
Sec. IV D.
Note that our argument in favor of an infinite bond

dimension does not imply that a discrete tensor network
state with a finite bond dimension could not behave, at
distances sufficiently large compared to the lattice spacing,
like a CTNS. Rather, our argument shows that any simple
space discretization of a CTNS in d ≥ 2 into a TNS will
have an infinite bond dimension, even for an arbitrarily
small lattice spacing. As in Ref. [35], it could also be that a
proper choice of boundary conditions would constrain the
tensor contraction on a finite-dimensional subspace, despite
an apparent infinite bond dimension.
We now need to discuss more precisely the form of the

elementary tensor. For notational simplicity, we now
assume that an elementary tensor T̂ to be contracted,

ð27Þ

is a vector in its bond indices but an operator acting on the
vacuum in the physical space, namely,

jphysical statei ¼ contractionfnetwork of T̂gj0i ð28Þ

ð29Þ

To obtain a continuum limit, the crucial choice lies in the
elementary “trivial tensor,” acting as the identity on the
vacuum, and around which to expand:

T̂ ¼ T̂ð0Þ þ εd × corrections: ð30Þ

Indeed, it is natural to want the tensor corresponding to zero
particle in an elementary cell of the physical space to
dominate. It seems that any other choice would preclude the
existence of a continuum limit. In d ¼ 1 dimension, there is
only one natural option, which is to take the tensor
corresponding to the identity:

ð31Þ

But, in the same way as for the bond dimension, the
situation is a little too trivial in d ¼ 1 to give a precise hint
for higher dimensions. In d > 1, there are several seem-
ingly natural options which we have to inspect. We discuss
the d ¼ 2 case, but the reasoning holds for any d ≥ 2. We
do not aim to prove that the tensor we ultimately expand
around is the only option but rather that other seemingly
simpler options bring difficulties.
(1) A naive option is to generalize the identity on the

auxiliary bond space by taking T̂ð0Þ
ijkl ¼ δijkl, that is,

to take an elementary tensor corresponding to a
Greenberger-Horne-Zeilinger (GHZ) state on the
bond indices:

ð32Þ

As will later be manifest, this choice is too brutal and
would yield a state with a trivial spatial structure.

(2) Another simple option is to take the identity along a
diagonal, e.g.,

ð33Þ

This is the choice that stays the closest in spirit
with the d ¼ 1 case. The problem of such a choice
(made, e.g., in Ref. [35]) is that it picks a preferred
direction and thus makes Euclidean invariance
impossible to obtain directly (that is, without ana-
lytic continuation).

(3) We may combine the 2d−1 identity operator along
diagonals in a sum, as an attempt to recover the
Euclidean invariance lost with the previous choice:

ð34Þ

An issue is then that the corresponding tensor
contraction contains loops

FIG. 3. Tensor blocking. In d ¼ 1, blocking does not increase
the bond dimension. In d ¼ 2, going from the UV to the IR
doubles the bond dimension at each blocking. Hence, flowing the
other way, from IR to UV, one reaches a trivial bond dimension
after a finite number of iterations unless the initial bond
dimension is infinite.
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ð35Þ

which yield divergent terms as tr½1� ¼ þ∞ for an
infinite bond dimension.

None of the natural options seem to provide a simple
Euclidean-invariant continuum limit. Our proposal consists
in taking a regularized version of the first possibility, in the
form of a “soft” delta:

ð36Þ

C. Discrete ansatz in d = 2

The first lesson from the previous sections is that infinite
bond dimensions seem to be required. We thus write the
bond indices of the elementary tensor asD real numbers. In
d ¼ 2, this means that an elementary tensor has four bond
indices ϕð1Þ, ϕð2Þ, ϕð3Þ, and ϕð4Þ ∈ RD:

ð37Þ

As we mentioned before, the heart of the problem of the
continuum limit lies in defining the proper trivial tensor
around which to expand. We choose a soft delta:

ð38Þ

This ansatz forces the bond indices to remain close to each
other and contributes to the generation of the gradient
squared term in the action. Being Gaussian, we also
naturally expect its form to be stable. To this “trivial” part,
we add local corrections of the order of εd ¼ ε2:

T̂ ¼ T̂ð0Þ exp ½−ε2VðϕÞ1þ ε2αðϕÞψ†ðxÞ�: ð39Þ

In this expression, ϕ denotes whatever combination of the
bond-field indices ϕð1Þ, ϕð2Þ, ϕð3Þ, and ϕð4Þ. The simplest
possibility is to take ϕ as the average of the bond indices,
but it does not matter for the continuum limit. The operator
ψ†ðxÞ anticipates the continuum and has commutation
relations ½ψðxÞ;ψ†ðyÞ� ¼ ð1=ε2Þδx;y ≃ δ2ðx − yÞ.
Ignoring the boundary conditions for now, the contrac-

tion of the tensors amounts to integrate over all the bond
indices:

jV; αi ¼
Z Y

x∈lattice
T̂ðxÞ

YD
k¼1

dϕk

�
xþ ε

2
e1

�

× dϕk

�
xþ ε

2
e2

�
j0i; ð40Þ

where e1 and e2 are unit vectors along the two lattice
directions and the bond fields are indexed by the points
on the links of the lattice where they sit. Writing
u ¼ ½ðx1 þ x2Þ= ffiffiffi

2
p � and v ¼ ½ðx1 − x2Þ= ffiffiffi

2
p �, we see that

the differences in Eq. (38) yield

Y
x∈lattice

T̂ðxÞ ≃
ε→0

exp

�
−
Z

d2x
½∂uϕkðxÞ�2 þ ½∂vϕkðxÞ�2

2

þ V½ϕðxÞ� − α½ϕðxÞ�ψ†ðxÞ
�
: ð41Þ

We recognize the (rotation-invariant) gradient squared term
of the continuum definition II A 1. Defining the path
integral “measure” as

Dϕ∶ ≃ lim
ε→0

Y
x∈lattice
k¼1…D

dϕk

�
xþ ε

2
e1

�
dϕk

�
xþ ε

2
e2

�
ð42Þ

finally yields the continuous tensor network state of Eq. (1)
up to boundary conditions. To get a state on the physical
Hilbert space, the auxiliary fields on the boundary just have
to be contracted (or integrated) against a boundary func-
tional, which we write B in Eq. (1).

D. Discrete ansatz in general d

For d ≥ 3, the derivation is carried along the sameway as
before. We just note that there is a small peculiarity in the
d ¼ 2 case because the auxiliary fields are adimensional.
To generalize Eq. (38) to higher spatial dimensions d > 2,
one naturally extends the prescription of summing all the
differences of the squares of the nearest bond indices
ϕð1Þ;…ϕð2dÞ. But, importantly, to obtain the continuum
limit, one needs to multiply this expression by εd−2, where ε
is the length of the unit cell:

T̂ð0Þ
ϕð1Þ…ϕð2dÞ ¼ exp

�
−
εd−2

2

XD
k¼1

� � �
�

ð43Þ

to obtain the integral of a gradient squared in the continuum
limit. In d ¼ 2, the εd of the integration measure and ε−2

from the gradient squared cancel each other, and this
scaling factor does not appear.
In retrospect, it is clear why deriving the continuum limit

by perturbing around the GHZ tensor (32) gives a trivial
continuum. It corresponds to putting an infinitely large
constant instead of εd−2 in Eq. (43), an infinite “rigidity”
that could not be compensated by locally small terms.
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IV. PROPERTIES

We now explore the properties of CTNSs that are
analogous to those of their discrete counterparts.

A. Stability and expressiveness

It is first natural to wonder how “big” the class of CTNSs
is. It could be, for example, that even for arbitrary large D
and arbitrary V, B, and α, CTNSs spanned only a small
sector of the Fock space. As in the discrete, can any state be
approximated, even if inefficiently, by a CTNS?
Let us first consider the stability of the CTNS class. The

sum of two CTNSs is still a CTNS, provided we are willing
to accept singular potentials V. More precisely, let
jV1; B1; α1i and jV2; B2; α2i be two CTNSs with bond-
field dimension D1 and D2. Then we can easily rewrite
their sum as a CTNS with bond-field dimension D1 þ
D2 þ 1 (although it may, in general, require fewer auxiliary
fields). For example, defining the CTNS jWΛ; C; βi with

WΛðϕ1;ϕ2; ϕ̃Þ ¼ V1ðϕ1Þθðϕ̃Þ þ V2ðϕ2Þθð−ϕ̃Þ
þ Λðϕ̃ − 1Þ2ðϕ̃þ 1Þ2; ð44Þ

Cðϕ1;ϕ2; ϕ̃Þ ¼ B1ðϕ1Þθðϕ̃Þ þ B2ðϕ2Þθð−ϕ̃Þ; ð45Þ

βðϕ1;ϕ2; ϕ̃Þ ¼ α1ðϕ1Þθðϕ̃Þ þ α2ðϕ2Þθð−ϕ̃Þ; ð46Þ

where θ is the Heaviside function, we have jW∞; C; βi ∝
jV1; B1; α1i þ jV2; B2; α2i. Indeed, when Λ is sent to
infinity, the auxiliary field ϕ̃ becomes a “bit” taking values
�1 digitally splitting the functional integral into two
contributions

R
Dϕ̃ ≃

P
ϕ̃≡�1, where each term of the

sum gives the two initial states.
The expressiveness of CTNSs is then easy to assess,

following the same technique as for CMPSs [35]. Taking
α½x;ϕðxÞ� ¼ fðxÞ and V ¼ a=VolðΩÞ, we obtain any
field-coherent state with any complex weight e−ajfi. Using
the stability result, one can construct arbitrary linear
combinations of such field-coherent states which are
dense in Fock space; hence, one can get arbitrarily close
to any state in the Fock space. With this construction, the
bond-field dimension grows at each addition of coherent
states.
Actually, using larger bond-field dimensions is only

a convenience, and, provided V and α are arbitrary, a
CTNS can approximate any state in the Fock space with
D ¼ 1. Let us consider a sum of coherent states jΨi ¼P

m
j¼1 e

−ai jfii. This sum can be approximated by the CTNS
jVΛ; 1; αi with

VΛ½x;ϕðxÞ� ¼ −Λ1½−1=2;mþ1=2�½ϕðxÞ� cos½2πϕðxÞ�

þ
Xm
j¼1

aj1½j−1=2;jþ1=2�½ϕðxÞ�; ð47Þ

α½x;ϕðxÞ� ¼
Xm
j¼1

1½j−1=2;jþ1=2�½ϕðxÞ�fjðxÞ; ð48Þ

where 1A½x� ¼ 1 if x ∈ A and 0 otherwise. Indeed, when
Λ → þ∞, the auxiliary field is forced to sit on one of them
minima of the potential, which each have a complex weight
e−aj . To each of these m possible values of the field, the
term in α associates a different coherent state. Hence, one
can approximate jΨiwith arbitrary precision and, hence, all
states in the Fock space.
Allowing larger values ofD remains useful if V and α are

restricted in some way, e.g., to being polynomials with a
fixed degree. In that case, being able to take a larger bond-
field dimension D substantially increases the expressive-
ness of a CTNS subclass. Gaussian CTNSs (see Sec. VA)
provide such an illustration.

B. Gauge transformation

Different choices of V, B, and α can generate the same
state. This fact is to be expected: In the discrete, the map
between an elementary tensor and a many-body wave
function is not injective, either. Understanding the trans-
formations between tensors generating the same state is
fundamental in the theory of TNSs, especially for the
classification of symmetry-protected and topological phases.
It is thus natural to ask the same question for CTNSs
following the discrete construction.

1. Intuition from the discrete

In the discrete, there exists an important subclass of
transformations one can apply on the bond indices of an
elementary tensor and that leave the state invariant. For
example, in d ¼ 2, the transformation (sometimes called
gauge transformation)

ð49Þ

where and gives the same
contracted state up to new boundary terms (that vanish
on a torus). Such transformations prove central to classify-
ing topological phases of matter with discrete tensor
networks. We would thus like to find an analog in the
continuum.
For an infinite bond dimension, the equivalent of an

invertible linear transformation acting on discrete indices is
a linear operator G acting on functions of D real variables
(the auxiliary field):

G · φðϕÞ ¼
Z

dDϕ̃Gðϕ; ϕ̃Þφðϕ̃Þ: ð50Þ

A G that is too generic typically destroys the continuum
limit when the corresponding gauge transformation (49) is
applied on the elementary tensor. The main difficulty is to
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know what subset of operators to look at. For simplicity, we
restrict ourselves to the caseD ¼ 1, from which the general
case is easily deduced.
A first option is to consider the subset of diagonal

transformations. Let F and G be two operators acting
diagonally:

G · φðϕÞ ¼ gðϕÞφðϕÞ; ð51Þ

F · φðϕÞ ¼ fðϕÞφðϕÞ: ð52Þ

Acting on an elementary discrete tensor in the same way as
in Eq. (49) with F and G simply changes the integration
measure:

dϕð1Þ…dϕð4Þ → f½ϕð1Þ�g½ϕð4Þ�
f½ϕð3Þ�g½ϕð2Þ� dϕð1Þ…dϕð4Þ: ð53Þ

If this change of measure is too general, there will be no
continuum limit. A natural choice, preserving the con-
tinuum, is to take

fðϕÞ ¼ exp ½−εd−1fðϕÞ�; ð54Þ

gðϕÞ ¼ exp ½−εd−1gðϕÞ�: ð55Þ

In the continuum limit, such a choice put in Eq. (53)
yields

Dϕ → Dϕ exp

�Z
d2x∇ ·

�
f½ϕðxÞ�
g½ϕðxÞ�

��
; ð56Þ

hence, this choice adds a pure divergence term into the
CTNS definition which can be transformed into a boundary
term thanks to Stokes’ theorem, which is exactly what a
gauge transformation should do.
This very special choice of operators does not exhaust

the infinitesimal transformations compatible with the exist-
ence of a continuum limit. However, we conjecture that all
discrete gauge transformations of the form of Eq. (49) that

preserve the continuum limit ultimately give rise to pure
divergence terms as well. In any case, this discussion of the
discrete setting is but a motivation for the introduction of
(some) continuous gauge transformations of CTNSs (see
Fig. 4).

2. Continuum description

The previous inquiries motivate the following proposi-
tion, which is at the same time a definition of a certain class
of gauge transformations for CTNSs.
Proposition 1 (gauge transformation).—Let F ½x;ϕðxÞ�

be an arbitrary vector field in Ω. If Ω has no boundary,
the CTNS jV; αi is left unchanged by the gauge trans-
formation:

VðϕÞ → VðϕÞ −∇ · F ½x;ϕðxÞ�: ð57Þ

The proof is trivial and is just a direct application of
Stokes’ theorem. More generally, if Ω has a boundary ∂Ω,
the gauge transformation (57) adds a boundary term to the
measure:

BðϕÞ → BðϕÞ exp
�I

∂Ω
dd−1xF ½x;ϕðxÞ� · nðxÞ

�
; ð58Þ

where nðxÞ is the unit vector normal to ∂Ω in x. Gauge
transformations of CTNSs thus have a straightforward
geometric interpretation.

C. Tensor rescaling

Our objective is now to relate different tensor network
descriptions of the same state at different scales [14,44].
More precisely, considering a correlation function for a
state parametrized by a tensor Tð1Þ in the thermodynamic
limit:

Cðx1;…; xnÞ ¼ hTð1ÞjOðx1Þ…OðxnÞjTð1Þi; ð59Þ

the objective is to find a tensor TðλÞ of new parameters such
that

Cðλx1;…; λxnÞ ∝ hTðλÞjOðx1Þ…OðxnÞjTðλÞi: ð60Þ

Naturally, in the discrete, this relation is at best
approximate.
For the CTNS of Definition 1, we can write the flow

VðλÞ, αðλÞ exactly, following the rather standard dimen-
sional analysis of ordinary QFT. As such, we introduce new
creation and annihilation operators ψ̃†ðxÞ ¼ λd=2ψ†ðxλÞ
and ψ̃ðxÞ ¼ λd=2ψðxλÞ. They indeed verify the standard
commutation relations ½ψ̃ðxÞ; ψ̃†ðxÞ� ¼ δðx − yÞ. These
new operators relate correlation functions at different
scales:

FIG. 4. Gauge transformations. In the discrete case (left),
transforming the elementary tensor as in Eq. (49) has a nontrivial
result on the boundary only. In the continuum (right),
the transformation of the elementary tensor is equivalent to the
addition of a pure divergence term for the auxiliary fields in the
bulk, which can then be integrated into a boundary condition.

CONTINUOUS TENSOR NETWORK STATES FOR … PHYS. REV. X 9, 021040 (2019)

021040-9



Cðλx1;…; λxnÞ ≔ hψ†ðλx1Þ…ψðλxnÞi ð61Þ

¼ λ−nd=2hψ̃†ðx1Þ…ψ̃†ðxnÞi; ð62Þ

where the λ−nd=2 factor just comes from the fact that the
operators we introduce have a dimension. We just have to
rewrite jV; αi as a function of the new creation and
annihilation operators to relate the different scales. To
achieve this rescaling, we change the position variable
introducing u ¼ x=λ. The free field measure now reads

dμðϕÞ ¼ Dϕ exp

�
−
1

2

Z
dduλd−2∇ϕkðuλÞ ·∇ϕkðλuÞ

�

ð63Þ

∝ Dϕ̃ exp
�
−
1

2

Z
ddu∇ϕ̃kðuÞ ·∇ϕ̃kðuÞ

�
ð64Þ

¼ dμðϕ̃Þ; ð65Þ

with ϕ̃ðuÞ ¼ λ½ðd−2Þ=2�ϕðλuÞ. This rescaling gives

jV; αiψ ¼
Z

dμðϕ̃Þ exp
�
−
Z

dduλdV½λð2−dÞ=2ϕ̃ðuÞ�

− λd=2α½λð2−dÞ=2ϕ̃ðuÞ�ψ̃†ðuÞ
�
j0i ð66Þ

¼ jλdV½λð2−dÞ=2·�; λd=2α½λð2−dÞ=2·�iψ̃ : ð67Þ

This result allows us to discuss the IR behavior of CTNSs
in terms of relevant, irrelevant, andmarginal couplings. To
this end, we informally expand V and α in powers p of the
fields ϕ and analyze the terms of each degree separately.
The corresponding coupling dimensionality is Δ ¼ dþ
½ð2 − dÞ=2�p for terms in V and Δ ¼ ðd=2Þ þ ½ð2 − dÞ=2�p
for α. Consequently,

For d ¼ 2, all powers of the field in V and α yield
relevant couplings. There are no irrelevant couplings.

For d ¼ 3, the powers p ¼ 1, 2, 3, 4, 5 of the field in V
yield relevant Δ > 0 couplings. The power p ¼ 6 is
marginal in V. For α, the powers p ¼ 1, 2 are relevant
and p ¼ 3 is marginal. All other powers are irrelevant.

Relevant powers will dominate the behavior of CTNS
correlation functions in the IR and actually be the only ones
allowed if the CTNS description is aimed to hold at all
scales in the non-Gaussian case (see Sec. V B).

D. Recovering continuous matrix product states

Continuous TNSs should reduce to CMPSs in an
appropriate limit, which is an important property to check
to demonstrate that our ansatz is a natural extension of
CMPSs to d ≥ 2.

1. Compactification

A CMPS of a quantum field defined on a space interval
of length T is parametrized by three (χ × χ) matrices Q̂, B̂,
and R̂ and is defined [33,34] as

jQ;B; Ri ¼ tr

�
B̂T exp

�Z
T=2

−T=2
dτQ̂þ R̂ ⊗ ψ†ðτÞ

��
j0i:

ð68Þ

To obtain a CMPS, we could directly instantiate our
CTNS ansatz with d ¼ 1, e.g., using its functional integral
form (1). However, as we mentioned before, the d ¼ 1 case
is quite peculiar compared to other dimensions, and so it is
nice to see it can also be immediately obtained from a
general d case where all dimensions but one are taken to be
very small.
Indeed, consider a domain of the form Ω ¼

½−T=2; T=2� × S, where S is a d − 1-dimensional torus
of length l in all d − 1 directions. Expanding the auxiliary
fields ϕ of Eq. (1) in Fourier modes on this d − 1 torus S
and taking the limit l → 0 yields a functional integral in
which only the field zero mode on S survives. Hence, one
obtains a functional integral of the form

jV; B; αi ¼
Z

DϕBðϕÞ exp
�
−
Z

T=2

−T=2
dx

1

2

XD
k¼1

½∂xϕkðxÞ�2

þ V½ϕðxÞ� − α½ϕðxÞ�ψ†ðxÞ
�
j0i; ð69Þ

where the one-dimensional auxiliary field ϕ is the zero
mode (on the shrunk torus S) of the initial d-dimensional
auxiliary field. It is what one would have obtained by fixing
immediately d ¼ 1 in Eq. (1). In operator form, Eq. (69)
becomes:

jV; B; αi ¼ tr
�
B̂T exp

�
−
Z

T=2

−T=2
dτ

XD
k¼1

P̂2
k

2

þ V½X̂� − α½X̂�ψ†ðτÞ
��

j0i; ð70Þ

where P̂k and X̂k are canonically conjugated pairs (D zero-
dimensional quantum fields). This is already a CMPS with
−Q̂ ¼ P

D
k¼1ðP̂2

k=2Þ þ V½X̂� and R̂ ¼ α½X̂�. However, the
bond Hilbert space is now that of D particles in one
dimension or one particle in D dimensions, and hence
χ ¼ þ∞.

2. Bond-dimension quantization

To obtain a genuine CMPS (with a finite bond dimen-
sion) from a d ¼ 1 CTNS defined by Eq. (70), we need to
choose a specific potential effectively reducing the Hilbert
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space dimensionality. The intuition is quite clear: Take a
potential with deep minima.
Let us take a potential with D deep minima mk on the

vertices closest to 0 of an hypercube, i.e.,m1 ¼ ð1; 0;…; 0Þ,
m2 ¼ ð0; 1; 0;…; 0Þ;…, and mD ¼ ð0;…; 0; 1Þ. The effec-
tive dynamics is now restricted to a D-dimensional Hilbert
space spanned by jmki corresponding to wave packets
localized around eachminima. In this reduced Hilbert space,
the minima are coupled by tunneling. Because of the
geometrical configuration we consider, the minima can all
be connected by independent saddle points, and, hence, the
effective coupling between the minima can be chosen freely.
With this freedom,we can obtain anyD ×D complexmatrix
Q of standard CMPSs by adjusting thevalue of theD2 saddle
points of V.
The Rmatrix is fixed in the same way. The values of α½X�

on the minima jmki of the potential fix the diagonal
coefficients of R, and the value on the saddle point connect-
ing jmk1i and jmk2i fixes the nondiagonal terms Rk1;k2 .
Hence, not only can CTNSs reduce to CMPSs when

d ¼ 1 (or when d − 1 dimensions are small) for a specific
choice of potential, but actually all (bosonic) CMPSs can be
obtained this way. In this context, the bond-field dimension
D reduces to the usual bond dimension χ.

V. COMPUTATIONS

To carry computations with CTNSs, one could of course
rediscretize them and use the standard TNS algorithms.
We now mention techniques relying only on the con-
tinuum limit.

A. Gaussian states

There exists a subclass of CTNSs for which all quantities
of interest can be computed exactly: Gaussian CTNSs.
Definition 3 (Gaussian CTNSs).—A CTNS is said to be

Gaussian if the functions V and α are, respectively, at most
quadratic and affine in the auxiliary field:

Vðx;ϕÞ ¼ Vð0ÞðxÞ þ Vð1Þ
k ðxÞϕk þ

1

2
Vð2Þ
kl ðxÞϕkϕl; ð71Þ

αðx;ϕÞ ¼ αð0ÞðxÞ þ αð1Þk ðxÞϕk: ð72Þ

Naturally, a Gaussian CTNS is also a Gaussian state in
the usual sense of the term. More precisely, for a Gaussian
CTNS, Zj0;j and Z̃j0;j are manifestly Gaussian functionals.
Let us compute Zj0;j in the translation-invariant case
Ω ¼ Rd. Inserting Definition 3 into Eq. (13) yields

Zj0;j ¼
1

N

Z
D½ϕ�D½ϕ0� exp

�
−
Z

ddx

�
ϕ

ϕ0

�T

·

� −△þVð2Þ
2

−αð1Þ⊗αð1Þ�
2

−αð1Þ�⊗αð1Þ
2

−△þVð2Þ�
2

�
·

�
ϕ

ϕ0

�

þ
�

Vð1Þ − αð1Þðjþ αð0Þ�Þ
Vð1Þ − αð1Þ�ðj0 þ αð0ÞÞ

�T

·

�
ϕ

ϕ0

�
− jαð0Þ − j0αð0Þ� − αð0Þαð0Þ� þ Vð0Þ þ Vð0Þ�

�
: ð73Þ

Carrying the Gaussian integration, we then obtain

Zj;j0 ¼
1

Ñ
exp

�Z
ddxddy

1

2
Λðj; j0ÞTðxÞ · Kðx; yÞ · Λðj; j0ÞðyÞ þ δðx − yÞðjαð0Þ þ j0αð0Þ�ÞðyÞ

�
; ð74Þ

where

Λðj; j0Þ ¼
�

Vð1Þ − αð1Þðjþ αð0Þ�Þ
Vð1Þ − αð1Þ�ðj0 þ αð0ÞÞ

�
and

�
−△þ Vð2Þ −αð1Þ ⊗ αð1Þ�

−αð1Þ� ⊗ αð1Þ −△þ Vð2Þ�

�
Kðx; yÞ ¼ 12D×2Dδðx − yÞ: ð75Þ

Because of translation invariance, Kðx; yÞ ¼ Kðx − yÞ, which can be written in Fourier space:

Kðx − yÞ ¼
Z

ddpeip·ðx−yÞKðpÞ: ð76Þ

Inserting this expression into Eq. (75) and integrating over the variable u ¼ ðx − yÞ yields

KðpÞ ¼ 1

ð2πÞd
�

p2 þ Vð2Þ −αð1Þ ⊗ αð1Þ�

−αð1Þ� ⊗ αð1Þ p2 þ Vð2Þ�

�−1
; ð77Þ

which is difficult to make more explicit but could be computed exactly for given α and V. To get an intuition of the behavior
of the two point functions, we may instantiate this expression on a simple example where the bond-field dimensionD equals
1 and αð0Þ ¼ Vð1Þ ¼ 0 for simplicity. In that case, we have
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KðpÞ ¼ 1

ð2πÞd
1

ðp2 þ Vð2ÞÞðp2 þ Vð2Þ�Þ − jαð1Þj4
�
p2 þ Vð2Þ� jαð1Þj2
jαð1Þj2 p2 þ Vð2Þ

�
: ð78Þ

Using Eq. (9) gives the correlation function:

Cðx − yÞ ≔ hψ†ðxÞψðyÞi ¼ jαð1Þj2
2

½ð1; 0ÞKðx; yÞð0; 1ÞT þ ð0; 1ÞKðx; yÞð1; 0ÞT � ð79Þ

¼ 1

ð2πÞd
Z

ddp
jαð1Þj4eip·ðx−yÞ

ðp2 þ Vð2ÞÞðp2 þ Vð2Þ�Þ − jαð1Þj4 : ð80Þ

Importantly here, the correlation function in momentum
space CðpÞ ∝ p−4 when p → þ∞. Hence, the integral is
not UV divergent for x ¼ y so long as d ≤ 3, in which case
the particle density hψ†ðxÞψðxÞi is finite.

B. Non-Gaussian states

For a non-Gaussian CTNS, it is no longer possible to
compute the correlation functions exactly, in general.
Furthermore, the definitions we provided for the CTNSs
in Eqs. (1) or (14) are generically divergent. Nonetheless,
one can use approximations or numerical techniques
coming from the quantum field theory and tensor network
toolboxes.

1. Regularization and renormalization

In the general case, the ansatz we put forward suffers
from the same UV divergences that plague quantum field
theories. As in QFTs, these divergences are in a way
inevitable: The gradient squared ð∇ϕÞ2 in the path integral
insufficiently penalizes high momenta in d ≥ 1 (note that,
again, the d ¼ 1 case is trivial). On the other hand, the
locality of the underlying tensor network forbids higher
derivatives. Hence, as in QFTs, the divergences are tied to
the very property (locality) that we require.
Given this state of affairs, there are essentially three

options to deal with divergences, depending on what one
needs the state for.
The first option is simply to regularize the state with a

momentum cutoff Λ, either directly in the path integral—
which breaks locality and destroys the operator represen-
tation—or in the operator representation—which generi-
cally breaks Euclidean invariance. In both cases, the scaleΛ
is reminiscent of the inverse lattice spacing of discrete
tensor networks. The parameters appearing in the expan-
sion of V and α are then the equivalent of the bare
parameters in QFT Lagrangians. As long as the state is
used as a variational ansatz, e.g., to minimize the energy of
an anyway regularized QFT Hamiltonian, this fact is

unproblematic. Indeed, carrying an optimization on bare
or renormalized parameters is equivalent, and the fact that
some properties break above a cutoff momentum is anyhow
imposed by the physical QFT being approximated. In this
approach, there is no restriction on the powers of the
auxiliary field appearing in V and α.
One may also be interested in the class of CTNSs for

their properties and not necessarily to approximate the
ground state of a given system. In that case, going
beyond regularization and renormalizing the state with
proper counterterms and renormalization conditions
seems necessary to preserve the locality of the underlying
tensor network. In the general case, this procedure is
equivalent to renormalizing a relativistic open quantum
field theory, a problem which has received interest
recently [45]. At the level of dimensional analysis, this
procedure restricts powers of the auxiliary field in V and
α to renormalizable interactions and, hence, to the
relevant and marginally relevant powers obtained in
Sec. IV C. In d ¼ 3, it restricts the parameters to a finite
number of tensors appearing in the finite polynomial
expansion of V and α. Allowing for more auxiliary fields
is thus necessary to make the CTNS class arbitrarily large
and expressive in d ¼ 3.
Finally, a natural regularization may be provided by

restricting the class of quantum states in d − 1 on which the
transfer matrix T acts. As we see, for special cases of T , one
can indeed recover finite results in d ¼ 2. In that case, the
state itself is implicitly defined by the approximate method
used to contract it.

2. Dimensional reduction

We now discuss the last option. To compute physical
correlation functions in the general case, one can exploit
their operator expression (20) given by the exponential of a
transfer matrix acting in a space of one dimension less. In
the d ¼ 2 case, the theory one needs to solve is thus simply
a one-dimensional QFT. The latter is solvable with CMPSs
(i.e., CTNSs in one dimension less), which, as a bonus,

ANTOINE TILLOY and J. IGNACIO CIRAC PHYS. REV. X 9, 021040 (2019)

021040-12



have a built-in UV regulator [46] and bring the computation
back to a zero-dimensional problem [47]. We outline the
steps of such a computation on a simple example.
We consider a CTNS on a torus ðτ; xÞ, τ ∈ ½0; T�,

x ∈ ½0; L� (as in Fig. 2), which reads, in the operator
representation,

jV; αi ¼ tr

�
T exp

�
−
Z

T

0

dτ
Z

L

0

dxHðxÞ

− α½ϕ̂ðxÞ�ψ†ðτ; xÞ
��

j0i: ð81Þ

Correlation functions for this state at a fixed τ take a
particularly simple form, with the propagator expðτTÞ
appearing only once. For example, the two-point function
reads

hψ†ðτ; x1Þψðτ; x2Þi ¼ tr½1 ⊗ α̂�ðx1Þ · α̂ðx2Þ ⊗ 1 · eTT �:
ð82Þ

Such N-point functions at equal τ contain useful informa-
tion about the state in the thermodynamic limit T → þ∞,
L → þ∞. Indeed, because of Euclidean invariance, they
give access to all correlation functions of aligned points and
a fortiori to all possible two-point functions, which is
sufficient to compute the expectation values of most
homogeneous and isotropic quasilocal Hamiltonians.
To simplify the discussion, we now consider the special

case of an Hermitian T (obtained, e.g., when all the
coefficients of V and α are real). In the T → þ∞ limit,
expðTTÞ is dominated by the projector on the eigenvector
jssi of T with the largest eigenvalue. The correlation
functions then simplify, e.g.,

hψ†ðτ;x1Þψðτ;x2Þi∝ hssj1⊗ α̂�ðx1Þ · α̂ðx2Þ⊗1jssi: ð83Þ

The right-hand side is the correlation function for (2D
copies of) a one-dimensional bosonic field theory, which
motivates the use of a CMPS. More precisely, we use a
CMPS defined on two copies of the auxiliary quantum
fields to approximate the dominant eigenvector jssi.
Assuming only D ¼ 1 auxiliary field, we can write

jQ;R1; R2i ¼ tr

�
Px exp

�Z
L

0

dxQ ⊗ 1

þ R1 ⊗ ψ†
1ðxÞ þ R2 ⊗ ψ†

2ðxÞ
��

j0i; ð84Þ

where Q, R1, and R2 are (χ × χ) matrices, ψ†
1 ¼ ψ†

½d−1� ⊗ 1

and ψ†
2 ¼ 1 ⊗ ψ†

½d−1� are the creation operators associated to
each copy of the Fock space on which T acts, j0i is the Fock
vacuum of these two copies, and the trace is taken over the
matrices. This object is nothing but a translation-invariant

CMPS for two species of bosons. The dominant eigenvector
can then be approximated by choosing

Q;R1; R2 ¼ argmax
Q;R1;R2

hQ;R1; R2jT jQ;R1; R2i
hQ;R1; R2jQ;R1; R2i

: ð85Þ

The right-hand side of Eq. (85) can be computed explicitly as
a function of Q, R1, and R2. Indeed, in the same way as we
compute the normal ordered correlation functions for a
CTNS in Eq. (20), one can compute the normal ordered
correlation functions for aCMPS, replacing−HðxÞ byQ and
αðxÞ by R1, R2 [34], e.g., for x ≥ y:

hψ†
1ðxÞψ1ðyÞi ¼ tr½eðL−xÞTð1 ⊗ R�

1Þeðx−yÞTðR1 ⊗ 1ÞeyT�
ð86Þ

with the (zero-dimensional) transfer matrix:

T ¼ Q ⊗ 1þ 1 ⊗ Q� þ R1 ⊗ R�
1 þ R2 ⊗ R�

2: ð87Þ

One then just has to express T as a function of ψ1 and ψ2

instead of the field and conjugate momenta, which requires a
choice, e.g.,

ϕ̂ðxÞ ¼ Λ−1=2
0

ψ ½d−1�ðxÞ þ ψ†
½d−1�ðxÞffiffiffi

2
p ; ð88Þ

π̂ðxÞ ¼ Λ1=2
0

ψ ½d−1�ðxÞ − ψ†
½d−1�ðxÞffiffiffi

2
p

i
; ð89Þ

for some Λ0. Taking the expectation value of products of
local operators on the CMPS yields divergent contributions.
They can be removed, e.g., by normal orderingH and α [48]
in the operator representation of Eq. (14) or by adding a
counterterm in theHamiltonian as inRef. [49]. In the end, the
expectation value to maximize can be written

hQ;R1; R2jT jQ;R1; R2i
hQ;R1; R2jQ;R1; R2i

¼ tr½MðQ;R1; R2ÞeLT�
tr½eLT� ; ð90Þ

where MðQ;R1; R2Þ is some polynomial of Q, R1, and R2

explicitly calculable from V and α. This expression can be
simplified in the thermodynamic limit and then be maxi-
mized, e.g., by gradient ascent [34]. In practice, for transfer
matrices with relativistic H like the ones we consider, this
maximization has to be carried over matrices Q, R1, and R2

with a fixed maximum norm (or with a soft penalization of
large norms). This constraint is necessary to prevent the
CMPS and its finite entanglement from capturing only the
UV features of the stationary state [46]. For sufficiently large
bond dimension χ, and taking into account this subtlety, we
expect to get a good estimate of the stationary state. OnceQ,
R1, and R2 are fixed this way, physical correlation functions
can be computed analytically using Eq. (83). For example, if
α is linear αðϕÞ ∝ ϕ, we get, for x ≥ y,
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hψ†ðτ; xÞψðτ; yÞi ∝ tr½eðL−xþyÞTðR2 ⊗ 1þ 1 ⊗ R�
2Þ

× eðx−yÞTðR1 ⊗ 1þ 1 ⊗ R�
1Þ�: ð91Þ

More complicated cases could be treated in a similar way.
Through two successive dimensional reductions,we can thus
compute certain correlation functions of a CTNS in d ¼ 2
with an expression involving only matrices with a finite
number of entries (d ¼ 0). There is a priori no objection, in
principle, to contracting a d ¼ 3 CTNS this way, but each
additional dimensional reduction is done at the price of a
variational optimization. For numerical purposes, the opti-
mization of the CMPS is the crucial step. While current
methods [46,49–51] can be used, the prospect to use CMPSs
to solve field theories in more than one spatial dimension
provides a strong additional motivation to make them more
efficient.

3. Perturbation theory

Given that it is possible to compute correlation functions
for Gaussian CTNSs, it is natural to compute correlation
functions for more general states by carrying a perturbative
expansion around Gaussian states. One simply Dyson
expands the non-Gaussian part of the exponential in the
expression for the generating functional (13). It generically
yields an expansion in terms of Feynman diagrams, similar
to that of QFT.
For example, if α½ϕ� is linear in ϕ with a correction

∝ λklϕkϕl, the expansion contains diagrams composed of
vertices with three and four legs, corresponding to the
α½ϕ�α�½ϕ0� term in Eq. (13), connected by Gaussian
propagators. As previously mentioned, unless cancellations
between different auxiliary fields occur, loop diagrams are
UV divergent and a regularization is needed. We leave the
derivation of the general Feynman rules, including a
renormalization scheme, to future work. Notice that, in
this approach, it is not the state itself that is defined through
a perturbative expansion, but rather the correlation func-
tions computed with it.

4. Others

There are, of course, many other ways one could
compute correlation functions. As we mentioned before,
one could rediscretize the CTNS to go back to a tensor
network description, truncate the bond dimension, and use
existing algorithms to contract it. However, this approach
would seem to partially defeat the purpose of introducing
the continuum in the first place. An interesting avenue is to
explore known approximations or tools of the quantum
field theory (besides the perturbation theory) that would not
be obvious in the discrete, like saddle point approxima-
tions, large D limits, or functional renormalization. Finally,
direct Monte Carlo sampling of the auxiliary field, although
it yields oscillating terms harming convergence in the
general case, is a last-resort option.

VI. GENERALIZATIONS

A. General metric and anisotropy

The main difficulty to overcome in order to construct
CTNSs lies in preserving local Euclidean symmetries. We
now wish to relax this constraint by allowing a general
metric and anisotropic terms in the functional integral
definition (1). Namely, it is natural to consider the follow-
ing generalization.
Definition 4 (general functional integral formulation).—

A CTNS of a bosonic quantum field on a smooth
Riemannian manifold M with boundary ∂M and metric
g is a state jV;B; αi parametrized by two functions V and α:
RDþdD → C and a boundary functional B: L2ð∂MÞ → C
defined by the functional integral on an auxiliary
D-component field ϕ:

jV;B;αi¼
Z

DϕBðϕj∂MÞexp
�
−
Z
M
ddx

ffiffiffi
g

p

×
�
gμν∂μϕk∂νϕk

2
þV½ϕ;∇ϕ�−α½ϕ;∇ϕ�ψ†

��
j0i;

ð92Þ

where all functions depend explicitly on the position and
summation on k is assumed.

B. Specialization: CMERA

A natural specialization of the previous generalization
consists in having an auxiliary field living on an hyperbolic
manifold M coupled to a physical field restricted to the
boundary ∂M (see Fig. 5). Namely, we have in mind a state
of the form

jV; αi ∼
Z

Dϕ exp

�
−
Z
M

ffiffiffi
g

p �
gμν∂μϕk∂νϕk

2
þ V½ϕ�

��

× exp

�I
∂M

α½ϕ�ψ†
�
j0i; ð93Þ

FIG. 5. Physical states on a boundary. In the discrete (left), the
MERA is a (special case of a) tensor network state with a
hierarchical structure, with physical indices only at the boundary.
Tensor network states with such a structure can also be extended
to the continuum with our CTNS ansatz, by restricting the
physical field to the boundary and choosing an appropriate
metric (here hyperbolic) for the bulk auxiliary fields.
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where the integral on the boundary may have to be taken as
some appropriately rescaled limit of a bulk integral. Such
states could provide a natural generalization of the MERA
[32] in the continuum and for an arbitrary number of
physical dimensions. They could provide a natural con-
tinuum versions of tensor network toy models of the
AdS=CFT correspondence [29–31]. The form (93) is also
reminiscent of field-theory toy models of the AdS=CFT
correspondence [52], where scalar field theories on a fixed
AdS background are related to conformal field theories on
the boundary.
Note that this approach is different in spirit from that of

the standard entanglement renormalization approach to
quantum fields [53–57], constructed as a unitary trans-
formation applied on a QFT ground state. In the proposal
(93), there is a straightforward lattice discretization and a
natural “bulk” description in terms of auxiliary fields.
However, the isometry property, characteristic of the
MERA, is less straightforward to implement.

C. Fermions

We define our ansatz for bosonic quantum fields,
because functional integrals and field-coherent states are
more natural in this context. To extend our proposal to
fermions, one would have to introduce quite peculiar
Grassmannian integrals with even kinetic and potential
V terms but a Grassmann odd term α in front of the creation
operator ψ†. For fermions, it may be more convenient to
start with an operator representation like that of Eq. (14),
where Euclidean invariance is less natural, to subsequently
derive the functional integral formulation.

D. Conformal field theory

We define CTNSs with the help of D auxiliary free
massless scalar fields of measure dμ. A natural generali-
zation would be to consider more general CFTs for the
auxiliary space, in the spirit of what has been proposed in
the context of matrix product states with infinite bond
dimensions [41]. Admittedly, some nontrivial measures can
already effectively be emulated by tuning the real part of
the potential V in Eq. (1). However, in the general case, it
may be more convenient to use the CFT machinery directly,
for example, on the wave function representation (7) and
(17) or on correlation functions.

VII. DISCUSSION

We put forward a new class of states for quantum fields
that is obtained as a continuum limit of tensor network
states and, thus, carries the same fundamental properties.
Although we show a number of interesting properties of

our class of states, many interesting questions are so far
open. Is it possible to find a quasilocal parent Hamiltonian
for such states? Can the transfer matrix T used to compute
correlation functions in the operator representation be put

in canonical form? Are there important gauge transforma-
tions our discussion in Sec. IV B ignores? How do V and α
encode topological order and (local and global) gauge
symmetries? Can this approach be combined with tech-
niques developed on the lattice to study gauge theories with
tensor networks [58–61]? Are there nontrivial non-
Gaussian CTNSs for which correlation functions can be
computed exactly? Do (possibly regularized) CTNSs
generically obey the area law like their discrete counter-
parts? Can CTNSs be used to construct interesting toy
models of the AdS/CFT correspondence? To what extent
does the bond-field dimensionD quantify entanglement for
(possibly only some) classes of CTNSs?
Tackling these questions is an important goal for future

work, to fully extend the success of tensor networks from
the lattice to the continuum.
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