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The observation of metallic ground states in a variety of two-dimensional electronic systems poses a
fundamental challenge for the theory of electron fluids. Here evidence is analyzed for the existence of a
regime, called the “anomalous metal regime,” in diverse 2D superconducting systems driven through
a quantum superconductor tometal transition by tuning physical parameters such as themagnetic field, the
gate voltage in the case of systems with a metal-oxide semiconductor field-effect transistor (MOSFET)
geometry, or the degree of disorder. The principal phenomenological observation is that in the anomalous
metal, as a function of decreasing temperature, the resistivity first drops as if the systemwere approaching a
superconducting ground state, but then saturates at low temperatures to a value that can be orders of
magnitude smaller than the Drude value. The anomalous metal also shows a giant positive magneto-
resistance.Thus, itbehavesas if itwerea“failedsuperconductor.”Thisbehavior isobserved inabroadrange
of parameters. It will be moreover exhibited, by theoretical solution of a model of superconducting grains
embedded in ametallic matrix, that as amatter of principle such anomalousmetallic behavior can occur in
the neighborhood of a quantum superconductor tometal transition. However, it will be also argued that the
robustness and ubiquitous nature of the observed phenomena are difficult to reconcile with any existing
theoretical treatment and speculate about the character of a more fundamental theoretical framework.
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I. INTRODUCTION

A metallic state is defined as a state in which the
conductivity σðTÞ remains finite as T → 0. There is an
extraordinarily successful Fermi liquid theory of clean 3D
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metals with kFl ≫ 1 and relatively weak interactions. Here
kF and l are the Fermi momentum and the electron mean-free
path, respectively. In the Fermi liquid theory there are two
types of excitations, fermionic and bosonic: Fermionic exci-
tations (quasiparticles) have a finite density of sates at the
Fermi level. Bosonic excitations (e.g., zero sound) roughly
can be divided into two groups: Those associated with the
charge excitations have a plasmon spectrum. Those associated
with spin fluctuations have a sound wave spectrum.1 In
principle electric current can be carried by both fermionic
and bosonic excitations. [See, for example, Brazovskii,
Matveenko, and Noziéres (1993) and Nayak et al. (2001).]
However, at low temperatures the contribution of the bosonic
excitations to the current is negligible due to their vanishing
density of states. Thus the electronic transport properties
are controlled by the fermionic excitations (quasiparticles).
The low-temperature conductivity of relatively pure 3D

metals is determined by impurity scattering and is given by
the Drude formula σD ¼ e2Dν. Here ν is the electron density
of states at the Fermi energy, vF is the Fermi velocity, and
D ¼ vFl=3 is the diffusion coefficient.
Another well-established paradigm is the Bardeen-Cooper-

Schrieffer (BCS) theory of superconductivity. It is based on
the idea that under some circumstances the electron attraction
can dominate the electron repulsion so that at low temper-
atures electrons form bosonic Cooper pairs which can con-
dense. It is this condensate that carries the supercurrent. As
parameters controlling the electronic environment (e.g., band
structure, interactions, or external magnetic field) change, the
system may exhibit a superconductor to metal transition,
which at T ¼ 0 is a quantum superconductor to metal
transition (QSMT). As we will discuss in detail, it follows
from the conventional theory of metals that in zero magnetic
field, the QSMT that occurs as the effective interactions
between electrons changes from attractive to repulsive does
not have a quantum critical regime. In other words, as the
system approaches the BCS superconducting state from the
metallic side, its properties in no way reflect the proximity of
another phase. In particular, the conductivity of the system is
controlled by the fermionic excitations (quasiparticles) every-
where in the metallic phase.
This picture is supported by a large number of experiments

on a variety of systems. However, there exists a variety of
experimental systems which exhibit a zero temperature
transition from a superconducting state to an “anomalous
metallic regime” with T → 0 electronic properties that cannot
be understood on the basis of Fermi liquid or Drude theory.
Specifically, the T → 0 conductivity in the anomalous met-
allic regime can be orders of magnitude larger than the Drude
conductivity, there is a giant positive magnetoresistance, and
as has been observed in at least one case the Hall response is
anomalous. Such behavior has been observed for transitions
tuned by changing a variety of parameters including the
magnetic field, gate voltage, and degree of disorder.
The properties of such anomalous metals is the focus of this

article. We will argue that the dramatic signatures in the

anomalous metal are due to the fact that it behaves as a “failed
superconductor,” a state in which there are significant super-
conducting correlations but nonetheless the system fails
to condense even as T → 0. In other words in the anomalous
metal regime current is carried by bosonic quantum fluctua-
tions of the superconducting order parameter. Contrary to
popular belief, this anomalousmetal appears robust even in two
spatial dimensions, d ¼ 2. It represents a new paradigm for the
electronic properties of a metal that is very different from a
Fermi liquid.

A. Background

1. Experimentally observed properties of the anomalous metal

A typical early observation of an anomalous metal was in a
study of the onset of superconductivity in ultrathin granular
metal films by Jaeger et al. (1989) in which the resistance
was observed to level off as T → 0 to a value much below the
Drude (normal state) value.
The fact that this represents an anomalous metallic phase

emerging from a QSMTwas first identified in experiments on
the magnetic field driven transition in relatively low-resistance
(kFl ≫ 1) amorphous Mo1−xGe (a-MoGe) films (Ephron
et al., 1996; Mason and Kapitulnik, 1999, 2001). There the
anomalous metal was observed over a broad range of
magnetic fields, exhibiting a low T resistivity that is as much
as 3 orders of magnitude smaller than the Drude value. Since
then, such a metallic phase proximate to a QSMT has been
found in many different systems with different tuning knobs.
Next we discuss the main experimental observations in the
anomalous metal regime, their robustness, and their signifi-
cance. Representative results are shown in Sec. II. Generic
features seen in a wide variety of material systems and
experimental platforms can be summarized as follows:

(i) Most of the evidence for an anomalous metal proxi-
mate to a QSMT comes from studies of two-
dimensional systems. Nonthermal parameters that
have been used to tune from the superconducting to
a nonsuperconducting state include microscopic
and/or macroscopic disorder, carrier density (typically
varied by tuning a gate voltage), screening properties
of a nearby ground plane, and a magnetic field (see
Sec. II). (Note in Sec. III we show that the theoretical
rational for the existence of such a state applies as well
in 3D. There have also been numerous experiments on
superconducting wires, but since the physics in 1D is
quite different than in higher dimensions, we will not
survey these results in the present review.)

(ii) The anomalous metallic state is ubiquitously found

in metallic films with normal state conductance σð2DÞD
that is significantly higher than the quantum of
conductance e2=h. Here the dimensionless conduct-

ance per square of the 2D system σð2DÞD is determined
either by applying a sufficiently high magnetic field
to suppress superconductivity and then extrapolating
the measured conductivity to T → 0 or from the
value of σ somewhat above the mean field Tc.

(iii) The anomalous metal appears as an intermediate
regime; when the systems are tuned further from the

1Phonons are also a class of ubiquitous bosonic modes. They are
in a sense neutral, although they can make a contribution to charge
transport through the mechanism of “phonon drag.”
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QSMT, they either exhibit a crossover to a “normal
metallic phase,” or a further metal-insulator transi-
tion (MIT). The range of parameters in which the
anomalous metal is observed is often broad (the
order of 1).

(iv) While disorder may be present, or even used as a
tuning parameter, there is no obvious dependence of
the observed phenomena on the detailed morphol-
ogy of the disorder. The anomalous metallic state
has been observed in strongly nonuniform systems,
including naturally granular systems and artificially
prepared arrays of superconducting “dots” on two-
dimensional (2D) semiconductors or metals. It is
also observed in what otherwise seem to be homo-
geneous films, both crystalline and amorphous.

(v) In some cases, typically characterized by strong
disorder, a direct superconductor to insulator tran-
sition (SIT) is observed. However, we note that
much of the published literature that exhibit an
anomalous metallic phase has been interpreted in
terms of a putative SIT. This sometimes incorrect
interpretation was, in turn, motivated by the theo-
retical belief that metallic phases are forbidden in
2D. The observation that some films exhibit a SIT
while others undergo a QSMT can be understood
if one posits the existence of a critical disorder
strength (Steiner, Breznay, and Kapitulnik, 2008)
(corresponding to kFl ∼ 1) such that there is a SIT
in more disordered films and a QSMT (possibly
followed by a MIT) in less.

(vi) Measurements of the Hall effect and finite frequency
conductivity can also reveal distinguishing charac-
teristics of the anomalous metallic phase.

2. Summary of the theoretical situation

We argue that there is currently no satisfactory theory of
anomalous metals that accounts for the full set of key
experimental facts, in particular, the robustness of the anoma-
lous metallic state. We view this as one of the major open
problems in condensed matter theory. However, there are
circumstances in which controlled theory is possible and
where the existence of an extended T ¼ 0 quantum critical
regime beyond a QSMT has been established (Feigel’man
and Larkin, 1998; Spivak, Zyuzin, and Hruska, 2001; Spivak,
Oreto, and Kivelson, 2008).
Such theoretical considerations are discussed in Sec. III,

where we analyze a “model system” of superconducting
puddles embedded in a “good” metal.
The finite temperature superconductor-metal transition is

driven by classical fluctuations, and it takes place when the
intergrain Josephson exchange energy is comparable to the
temperature Jij ∼ T. Neglecting quantum fluctuations of
the order parameter, one would infer that such a system is
always a superconductor at sufficiently low T. Quantum
fluctuations of the phase of an isolated superconducting grain
are associated with the charging energy. However, there is no
charging energy for a grain embedded in a metal; nonetheless,
provided the effects of electron repulsion in the metal are

taken into account, it can be shown that there exists a critical
concentration of puddles below which long-range phase
coherence is destroyed by quantum fluctuations.2

In the neighborhood of the resulting QSMT, a substantial
fraction of the current is carried by bosonic fluctuations of the
superconducting order parameter. Thus, as a point of princi-
ple, such a granular system can have an anomalous metallic
ground state (i.e., without superconducting long-range phase
coherence) with a T ¼ 0 conductivity that diverges upon
approach to the quantum critical point (QCP). Such a system
also exhibits a large positive magnetoresistance.
However, while these considerations address the point of

principle, they do not account for the broad range of temper-
atures and tuning parameters over which anomalous metallic
behavior is observed. At issue is the fact that the Ginzburg-
Levanyuk parameter (Levanyuk, 1959; Ginzburg, 1961),
which typically characterizes the width of the fluctuational
regime near a critical point, is very small in most of the
relevant experimental systems. This seemingly implies a
narrow range of parameters where significant quantum fluc-
tuations exist. In Sec. IV we consider other possible mech-
anisms for the QSMT that could pertain even to uniform
systems.
We also discuss the role of “rare events” on the quantum

critical transition in Sec. III.B.8. Systems that exhibit only
slight nonuniformities in their electronic structure when far
from criticality show amplified effects of small inhomogene-
ities when tuned close to a QCP. In the case of quantum phase
transitions involving a discrete symmetry breaking, such
considerations (Fisher, 1992, 1995) can lead to a “quantum
Griffiths phase,” i.e., a range of parameters of finite measure in
the vicinity of the QCP in which the appropriate thermody-
namic susceptibility diverges. Spivak, Oreto, and Kivelson
(2008) showed that in the case of the QSMT, while there exist
circumstances in which the effect of rare regions are highly
amplified, they can never be strong enough to produce a true
quantum Griffith phase.

3. Is 2D localization relevant in the anomalous metal regime?

Experimentally, most reports of anomalous metals involve
2D samples. Thus, a natural question arises concerning the
relevance of 2D localization effects, which have been a key
feature of the theory of transport phenomena in the presence of
disorder. 2D localization theory is based on the observation
that, in the absence of interactions, the first correction to
Drude theory in powers of 1=kFl diverges logarithmically as
T → 0. Renormalization group analysis, assuming one param-
eter scaling, leads to the inference that σðTÞ → 0 as T → 0
(Abrahams et al., 1979; Gorkov, Larkin, and Khmelnitskii,
1979). [For a review, see Lee and Ramakrishnan (1985).] This
hypothesis has been confirmed by a numerical solution of
the Schrödinger equation for a single particle in a disordered
medium. [See, for example, Cheraghchi (2006) and Markos
(2006).] In other words, in the absence of interactions and
spin-orbit scattering, 2D metals do not exist. The question of

2A corollary of this analysis is that with attractive interactions
only, an electron fluid can only undergo a SIT and will never exhibit
an intermediate metallic phase.
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2D localization in disordered metals with electron-electron
interactions is more complicated, and in spite of extensive
theoretical effort there is still no full understanding of the
problem.
In order to see the predicted crossover to insulating

behavior for systems with kFl ≫ 1, one would have to
measure the conductance at exponentially low temperatures,

T < T⋆ ∼ EF exp½−πkFl�: ð1Þ

In any case, for this review, we can ignore “localization”
effects, including interactional ones (Altshuler, Aronov, and
Lee, 1980; Lee and Ramakrishnan, 1985; Finkelshtein, 1987),
for several reasons: (i) In most cases the experiments we are
interested in are carried out in the range T ≫ T⋆. (ii) The fact
that the low T conductivity is typically orders of magnitude

larger than σð2DÞD implies that the starting point of the perturba-
tive renormalization group (RG) consideration in Abrahams
et al. (1979) and Gorkov, Larkin, and Khmelnitskii (1979) is
inapplicable in the present circumstances. (iii) Finally, bosonic
excitations are not subject to weak localization.
On the other hand, weak localization effects are cut off by

the superconducting gap Δ0. Therefore the superconducting
state is robust for kFl ≫ 1 and T ¼ 0 so long as Δ0 > T⋆.

II. EXPERIMENT

In this section, we discuss multiple examples of exper-
imental systems in which an anomalous metallic phase is
found to exist as T → 0 proximate to a superconducting phase.
Various “knobs” are used to tune these systems from a
superconducting to a nonsuperconducting ground state includ-
ing gate voltage, film thickness, or an applied magnetic field.
It is important to stress that the nature of the anomalous metal
is roughly similar in all cases.
The systems we discuss in this section are all in some

essential way 2D. One reason for this is that it is relatively
easier to tune 2D systems through a QSMT. However, on
the basis of the theoretical considerations of Sec. III, there
does not appear to be any reason that similar phenomena are
excluded in 3D. In relatively pure 3D samples, magnetic field
tuned superconductor-metal transitions have been studied for
decades. For most 3D superconductors, the transition to the
“normal state” can be satisfactorily described by the usual
mean-field description of the upper critical field Hc2.
However, in some circumstances classical melting of the
vortex lattice is observed before the mean field Hc2, and as
T → 0, this may cross over to quantum melting. While the
thermal melting transitions are now reasonably well under-
stood (Blatter et al., 1994), the transition to the quantum-
dominated regime is not fully understood. We will return to
the issue of the QSMT in 3D in Sec. IV.

A. Distinguishing insulators, metals, and superconductors

The defining feature that distinguishes metals from insula-
tors is the value of the conductivity in the limit T → 0; it
vanishes in an insulator and approaches a finite limit in a
metal. The resistivity vanishes in a superconductor—in some
cases below a nonzero critical temperature, but in other cases

(as in a 2D superconductor in the presence of a magnetic field)
only in the limit T → 0.
Alas, experiments are always confined to nonzero temper-

atures. We are thus always faced with the task of inferring the
character of ground-state phases based on low-temperature
measurements. In doing this, it is important to pay attention to
both the magnitude and the temperature dependence of the
resistivity. Even in conventional, 3D metals there are circum-
stances in which the resistivity is an increasing or a decreasing
function of T at low temperatures, so the sign of dρ=dT cannot
be taken as the defining feature of a metal. Rather, the relevant
analysis involves fitting the measured T dependence of ρ
to an appropriate functional form, and then using this fit to
extrapolate the results to T → 0.
In most cases we will be reviewing, ρðTÞ in the anomalous

metallic phase is essentially T independent for a range of
accessible low temperatures, so the extrapolation to T ¼ 0 is
obvious. In all cases, it is also important to pay attention to
the magnitude of the resistivity: when ρðTÞ ≫ h=e2 at the
lowest temperatures, it is a priori reasonable to expect that it
will diverge as T → 0, while conversely it would be rather
unexpected to encounter a low-temperature regime in which
ρðTÞ ≪ h=e2 in a system that is tending toward an insulating
ground state.

B. SIT versus QSMT

As mentioned in the Introduction, early studies of 2D
systems were interpreted in the context of a scaling theory
(Fisher, 1990) of the SIT. Some of these data appear in the
present review, but are now interpreted as showing evidence of
a QSMT. To avoid confusion, we begin with a discussion of
this “historical” point.
Typically, in studies of a putative SIT, a state was identified

as “superconducting” if the resistivity at low T was an
increasing function of T and “insulating” if a decreasing
function. In some cases the experimental data may be
consistent with the assumption that there is a direct transition
with no intermediate metallic phase. For example, the early
study of Haviland, Liu, and Goldman (1989) (see Fig. 1)
shows an evolution of the temperature dependence of the sheet
resistance RðTÞ with increasing thickness of an amorphous
Bi film deposited onto Ge. At the separatrix, the resistance
is T independent and has a value ρ ≈ ð1=4Þh=e2 correspond-
ing to kFl ≈ 4.3

3The value of the resistance on the separatrix was identified by
Haviland, Liu, and Goldman (1989) as the Cooper pair quantum of
resistance h=ð2eÞ2 in agreement with the prediction of Fisher (1990)
which was based on an idea of the localization of Cooper pairs. We
note however that the resistivity at the separtrix is T independent up
to 10 times or more than the maximal Tc where the Cooper pairs do
not exist. Therefore it should be associated with a more conventional
Drude theory rather than with quantum critical diffusion of charge 2e
bosons. Note, in other cases, where a clear separation between the
normal state and the regime of superconducting fluctuations is
observed, the notion that the critical conductivity is associated with
a self-dual point of charge 2e bosons, and hence has a value h=ð2eÞ2,
has some experimental support; see, for example, Breznay et al.
(2016).
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Another example of a set of data that was so interpreted is
shown in Fig. 2. Here, using a similar technique to gradually
increase a film’s thickness by depositing at very low temper-
atures, the evolution of the sheet resistance RðTÞ with thick-
ness was studied for various metallic elements. Qualitative
differences in the T dependences are apparent between the
thicker films (with lower normal state sheet resistance) and
thinner films, as T decreases below a characteristic scale
(presumably associated with the onset of local superconduct-
ing pairing), the resistivity of the thicker films drops precipi-
tously while in the thinner films it increases. The existence of
an approximately thick independent pairing scale was rea-
sonably taken as indication of a granular morphology of the
films. However, importantly from the current perspective, at
still lower temperature, the resistance of the near critical
films does not vanish at a well-defined finite temperature
transition, but rather levels off to a value well below the
normal state value.
Similar results are apparent in the data of White, Dynes, and

Garno (1986) for thin layers of Sn and Pb on a helium-cooled
glass substrate; see Fig. 3.
Data that approximately satisfy scaling relations (Fisher,

1990) expected in the critical regime of a magnetic field driven
quantum SIT were obtained by Hebard and Paalanen (1990)
(not shown). Here a transverse magnetic field was used to tune
a thin film of disordered (mostly amorphous) indium oxide
(InOx) from a state in which the resistance decreases as a
function of decreasing temperature to a state where the
resistance increases in an activated fashion. The SIT was

associated with a thermal “crossing point,” corresponding to a
critical field at which the sign of the temperature derivative of
R goes from positive to negative.
It is an important open question that should be revisited

under what circumstances a direct SIT can occur without a
possibly narrow intervening metallic phase. In the remainder
of this section, we focus exclusively on experiments in which
the existence of an anomalous metallic phase is clear. In some
cases, these studies involve films with kFl ≫ 1. As far as we
know, whenever kFl ≫ 1 at the point of the quantum phase
transition from the superconducting state, the proximate phase

FIG. 2. Resistance (on a logarithmic scale) vs T for a sequence
of “granular” films of (a) Al, (b) In, (c) Ga, and (d) Pb where for
each subsequent film a small amount of metal is added to the
previous film increasing the nominal thickness of the film. From
Jaeger et al., 1989.

FIG. 1. The iconic figure of a superconductor to insulator
transition in amorphous Bi films of varying film thickness.
(Thicker films have lower resistance.) From Haviland, Liu,
and Goldman, 1989.
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is always a metal. No similarly categorical statement can be
made concerning systems with kFl ∼ 1; however, as we shall
see, many such systems also exhibit clear anomalous metallic
phases.4

C. Magnetic field driven QSMT

The fact that magnetic fields can be tuned continuously,
and that in almost all cases superconductivity can be quenched
in accessible field ranges, makes the magnetic field driven
transition particularly suitable for experimental study.
However, there are possibly special aspects that are associated
with field-induced vortices, and with the breaking of time-
reversal symmetry that could, in principle, distinguish the
field-induced QSMT from other cases. Nonetheless, in
Sec. II.D we will show that many aspects of the problem
appear to be the same whether or not a magnetic field is
present.
Figures 4 and 5 show data from a field driven transition in

highly metallic a-MoGe from Ephron et al. (1996) and Mason

and Kapitulnik (1999, 2001). The “normal state” resistivity of

these films ρN ¼ 1=σð2DÞD measured at temperatures somewhat
above the zero field Tc or at T ¼ 0 and large H is small
compared to the quantum of resistance, implying that

FIG. 4. (a) Resistance vs temperature for an a-MoGe film at
a sequence of fixed magnetic fields. (The inset shows the
putative crossing point of the isotherms.) From Yazdani and
Kapitulnik (1995). (b) Resistivity on a logarithmic scale vs
1=T for an a-MoGe film at various values of magnetic field
H; the low T saturation is evidence of the existence of an
anomalous metallic phase.

FIG. 3. Resistance (on a logarithmic scale) vs 1=T for a
sequence of Sn films of varying thicknesses. FromWhite, Dynes,
and Garno, 1986.

FIG. 5. (a) The magnetic field dependence of the low-temper-
ature resistivity of a highly metallic a-MoGe film, shown on a
logarithmic. (Over most of this field range, R is essentially
temperature independent below 100 mK.) The inset shows a
“crossing point” at an apparent critical field of approximately
1.8 T. (b) An expanded version of the lowest temperature curves
shown as the dashed rectangle in (a). The inset shows that, within
experimental error, a zero resistance state is found below a QSMT
at H ≈ 0.18 T. From Mason and Kapitulnik, 1999, 2001.

4Away to reconcile the differences between systems that exhibit a
QSMT versus a SIT was proposed by Steiner, Breznay, and
Kapitulnik (2008). Rather than focusing on the value of kFl, they
proposed that there are two distinct behaviors depending on the value
of the critical conductivity σc defined as the T → 0 limit of the
conductivity at the point at which superconductivity is destroyed.
Where σc < 4e2=h, there is generally a SIT. On the other hand, where
σc ≫ h=4e2 there is a QSMT.
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kFl ≫ 1. [Typical values of the Drude conductivity in this

case are in the range σð2DÞD ∼ ð20–40Þ × e2=h.] Moreover, the
high field resistance is only weakly H and T dependent, as is
expected in a range of fields in which ωcτ ≪ 1. (Here ωc is the
cyclotron frequency, and τ ¼ l=vF is the transport lifetime.)
At smaller H, there exists a broad range of intermediate fields
in which the resistivity first drops dramatically with decreas-
ing temperature and then saturates at a low T “plateau” value
that can be as much as 3–4 orders of magnitude smaller than
ρD. Assuming that a T independent σðH; TÞ can be extrapo-
lated to T ¼ 0, these data imply the existence of a well-
defined metallic quantum phase of matter. Moreover, the
extent of this phase can be explicitly delimited: On the high
field side, it is bounded by the above-mentioned crossing
point that was previously associated with a SIT, but which is
now associated with either a MIT or possibly a crossover from
an anomalous to a more conventional metal. On the low field
side, a later study by Mason and Kapitulnik (1999, 2001)
identified a critical field that marks the phase transition
between a fully superconducting phase (in which, within
experimental uncertainty, ρ → 0 as T → 0) at low field and the
anomalous metal at higher fields. This situation is sketched in
the qualitative phase diagram in Fig. 6.
Similar field driven QSMTs with an anomalous metal

regime have been observed in a diverse range of material
systems with different morphologies. Next we show data on
field-tuned anomalous metal phases for homogeneously dis-
ordered superconducting tantalum thin films (Fig. 7), amor-
phous tantalum-nitride (TaNx), and indium-oxide (InOx)
films (Fig. 8).
While early field-tuned measurements demonstrated the

emergence of a metallic phase in “homogeneously disor-
dered” films, recent results on highly crystalline materials
reinforce the idea that the important parameter is the initial
high conductance of the films (that is, kFl ≫ 1), rather than
the disorder per se. For example, Saito et al. (2015) reported
transport studies on a single-crystalline flake of ZrNCl, which
is ion gated, hence allowing for the tuning of the interface
carrier density. In particular, they found that the zero resis-
tance state is destroyed by the application of finite out-of-
plane magnetic fields, and a metallic state is stabilized in a
wide range of magnetic fields (Fig. 9). In a recent paper, a field
driven QSMT was also documented in ion-tuned gated
samples of 1T-TiSe2, and an anomalous metallic phase was
observed (Li et al., 2018). It is interesting to note how
remarkably similar are the data in both of these systems to
the measurements on a-MoGe (Ephron et al., 1996).

D. QSMT at zero magnetic field

Nominally, a disordered superconductor in the presence
of a magnetic field forms a glassy state, which implies slow
dynamics and even history dependent properties. Indeed,
some experiments on field-induced anomalous metals exhibit
hysteretic behavior (Mason and Kapitulnik, 1999, 2001).
Moreover, one can wonder whether the fact that H breaks
time-reversal symmetry is essential for the existence of the
anomalous metal. Therefore it is important to study the same
phenomena in cases in which a zero field transition can be

FIG. 6. Schematic phase diagrams for QSMT. (a) The magnetic
field driven QSMT. The open circle represents the thermal
transition at H ¼ 0 and the solid circle the QCP associated with
the QSMT. The dashed curves represent possible crossovers. The
anomalous metal may be bounded at high H by an insulating
phase, in which case there would be a QCP associated with a MIT
at the end of the upper crossover line. Alternatively, there could
be a quantum crossover to a metallic phase dominated by
fermionic excitations. (b) A phase diagram for the gate-tuned
QSMT. (More generally, x represents a quantum tuning parameter
that does not break time-reversal symmetry.) The solid line
represents the superconducting phase boundary and the solid
circle the QCP associated with the QSMT. The dashed curve
represents a crossover. As in the field-tuned case, the anomalous
metal may be bounded at large x by an insulating phase, in which
case there would be a QCP associated with a MITat the end of the
crossover line, or there could be a quantum crossover to a metallic
phase dominated by fermionic excitations.

FIG. 7. Resistivity as a function of T for a Ta film for distinct
magnetic fields equally spaced between 0 and 5 T. From Qin,
Vicente, and Yoon, 2006.
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driven by other means. One difference with the field driven
case is that, so long as the ground state is superconducting,
one expects there to be a finite temperature phase transition as
shown in the schematic phase diagram in Fig. 6.
Electrostatic gating is an effective method to introduce

doping at the interface of a conducting material. As gating
involves introducing a nearby metallic electrode, it also affects
the screening of Coulomb interactions and so introduces an
additional dissipation channel.
Probably the first study of a gate-controlled QSMT was

performed on an array of Al-Al2Ox-Al Josephson junctions
fabricated on a GaAs=Al0.3Ga0.7As heterostructure in which a
2D electron gas (2DEG) was located approximately 100 nm
from the surface (Rimberg et al., 1997). In this study, the

2DEG was presumably only coupled capacitively to the
Josephson junction array; however, so long as the conductivity
of the 2DEG was sufficiently large, screening provided by the
2DEG caused the array to show superconducting behavior
despite a large junction resistance. Gating was then used to
change the resistance of the 2DEG and hence the dissipation
in the electrodynamic environment of the array. As shown in
Fig. 10, the temperature dependence of the array is different
depending on the resistance of the 2DEG. In all cases, the
resistance of the array decreases with decreasing temperature
for T ∼ 0.2 K, presumably reflecting the local superconduct-
ing order in the array. However, at lower temperatures, the
resistance of the array continues to drop and then to saturate
at the lowest temperatures when the resistance of the 2DEG
is small. Conversely, the resistance of the array increases
strongly with decreasing temperature when the resistance of
the 2DEG is large. This behavior is suggestive of the existence
of an anomalous metallic state.
There have been a number of other studies of gate-tuned

QSMTs. In contrast to the early experiments of Rimberg et al.
(1997), in these other studies the gate primarily serves to tune
an intergrain Josephson coupling: In Fig. 11 we show data
from experiments (Han et al., 2014) on artificially prepared
samples where a regular array of superconducting Sn disks
were placed in a regular lattice on a graphene substrate. The
density of electrons in the graphene can be varied by varying
the voltage applied by a back gate. There is a proximity effect
coupling between the superconducting droplets and the
graphene, so the gate voltage (among other things) tunes
the effective Josephson coupling between neighboring disks.
The distinct colors in the figure represent the resistance as a

FIG. 9. Arrhenius plot of the sheet resistance of an electric
double layer transistor of ZrNCl at gate voltage VG ¼ 6.5 V for
different magnetic fields perpendicular to the surface. The black
dashed lines demonstrate the activated behavior with activation
energy UðHÞ ∝ lnðH0=HÞ, similar to Ephron et al. (1996). The
arrows separate the thermally activated state in the high-temper-
ature limit and the saturated state at lower temperatures. From
Saito et al., 2015.

FIG. 8. Resistivity as a function of T for TaNx and InOx films.
The left-hand panels show the superconducting transition in
resistance vs T for H ¼ 0. The right-hand panels show the
resistance on a logarithmic scale as a function of 1=T for various
values of the applied magnetic field. From Breznay and Kapi-
tulnik, 2017.

FIG. 10. Resistance of the Josephson array R0 (on a logarithmic
scale) vs resistance Rg of a ground plane (also on a logarithmic
scale) to which the array is capacitively coupled. The main figure
shows results for a set of increasingly low temperatures. The inset
shows the temperature dependence of R0 for Rg ¼ 170 Ω=□
(which exhibits anomalous metallic behavior) and 2290 Ω=□
which exhibits insulating tendencies, presumably due to quantum
fluctuations of the order parameter phase in the Josephson
junction array. From Rimberg et al., 1997.
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function of T for various values of the gate voltage. The initial
drop in the resistance is associated with the onset of super-
conductivity within the droplets. For large values of the gate
voltage (large electron densities in the graphene), the resis-
tance drops sharply at a somewhat lower temperature,
extrapolating to zero at a superconducting transition temper-
ature that varies depending on voltage. However, in the
anomalous metal regime which appears for somewhat smaller
gate voltages, as T decreases, the resistance drops by as much
as 3–4 orders of magnitude, but then saturates at a finite
plateau value that can be 3–4 orders of magnitude smaller than
the Drude value. This behavior is very similar to that seen in
the vicinity of the field driven QSMT. In this range of gate
voltages, a magnetic field applied at low T produces a giant
increase in the resistance which saturates at high fields—a
gigantic positive magnetoresistance that recovers the Drude
value of the resistance, presumably by suppressing any
remnant superconducting coherence.
Figure 12 shows results for the system studied by Bøttcher

et al. (2018). Here a gated semiconductor heterostructure
with epitaxial Al was patterned to form a regular array of
superconducting islands connected via a InAs quantum well.
Gating the quantum well allowed for variation by many orders
of magnitude in resistance, thus unveiling a range of anoma-
lous metal behavior.
All the examples presented so far of a gate-tuned QSMT

involved artificially fabricated granular systems, where the
gate affects the properties of the intergranular (substrate)
electronic structure. However, anomalous metallic states have

also been observed in 2D films and interfaces that are
considered homogeneous. For example, the same ZrNCl
system for which the field-tuned transition is shown in
Fig. 9 can also be tuned by tuning an ionic-gate voltage
(Saito et al., 2015).
Devices made of exfoliated single crystalline transition

metal dichalcogonides, such as MoS2 (Ye et al., 2012) and
WTe2 (Sajadi et al., 2017) have shown a transition from a
superconducting state to an anomalous metallic state upon
varying the gate voltage. An example of WTe2 is shown in
Fig. 13 (Sajadi et al., 2017).
An advance in gate-controlled coupling was achieved

by Chen et al. (2017) utilizing dual electrostatic gates,
which, as shown in Fig. 14, were used to manipulate both
the mean depth and the asymmetry of the quantum well in a
SrTiO3-LaAlO3 heterostructure. Notably, the large (exceeding
20 000) and nonlinear dielectric constant of the SrTiO3 greatly
enhances the tunability of this system as compared to
conventional gating experiments. On one side, the 2DEG
is bounded by the wide gap LaAlO3, where a top gate (VTG)
predominantly controlled the density of carriers confined
close to the SrTiO3=LaAlO3 interface. A back gate (VBG) is
then used to control the thickness of the conduction layer
at the interface, hence the interfacial scattering rate and
mobility of the 2DEG.
Turning to “unconventional” superconducting states, Fig. 15

shows the resistivity as a function of T for a liquid ion gated
film of the cuprate superconductor La2CuO4þδ. At small gate

FIG. 11. The resistance vs T on a log-log scale of an ordered
array of Sn disks on a graphene substrate; the density of electrons
in the graphene is controlled by adjusting the voltage with a back
gate. For the largest gate voltages (highest electron densities)
there is a clear finite temperature transition to a superconducting
state. However, for a broad range of lower gate voltages, we see
the familiar several orders of magnitude drop in the resistance that
terminates in a temperature independent plateau. From Han et al.,
2014.
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FIG. 12. Log of the sheet resistance Rs as a function of the
inverse temperature T−1 in a gated InAs heterostructure with
epitaxial Al patterned to form a regular array of superconducting
islands. Data are shown for a range of gate voltages VG from −3.0
to −3.9 V. The dashed curve corresponds to VG ¼ −3.73 V; the
tendency of the curves with VG ≥ −3.73 V to saturate at low T
is indicative of the occurrence of a metallic phase. From Bøttcher
et al., 2018.
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voltage, the film exhibits clear insulating behavior, while at
large gate voltage it is superconducting below a nonzero
superconducting transition temperature. However, as shown
in the inset, at intermediate values of the gate voltage, while the
resistance drops below a well-defined crossover temperature,
it appears to saturate at low T to a small value (sometimes 4
orders of magnitude smaller than ρD). Note that with the higher
Tc of this system, the temperature where saturation is apparent
also increases. For example, at the highest gate voltage in
Fig. 15, saturation occurs below ∼10 K. This issue will become
important in arguing against a simple heating as explanation of
the resistance saturation.
While gate or magnetic field tuning have the advantage

that they can be varied continuously, other approaches to the
QSMT have been successfully explored as well.
Early studies in which a sequence of presumably granular

films is studied for various film thickness have already been
presented in Fig. 2. Similarly, a more recent study (Crauste
et al., 2009) of presumably homogeneous films of NixSi1−x of
various thicknesses have found that as a function of decreasing
T, the thinnest films show a strong divergence of the resistivity
indicative of approach to an insulating groundstate. The
thickest films show a finite temperature transition to a zero
resistance state, but films of intermediate thickness show the
familiar signatures of an anomalous metal.
Since both the Josephson coupling and the charging

energies depend on the size and distance between grains,
similar tunability can be achieved by preparing samples with
different grain size and periodicity. Indeed, this approach was
taken by Eley et al. (2012), where an array of Nb dots was
deposited on a gold substrate. As seen in Fig. 16, a low-
temperature metallic state is clearly revealed at a wide range of
distance between grains.

E. Not just the resistivity

Other features of the anomalous metal that illustrate its
character as a failed superconductor have been measured in a
limited number of cases.
(1) The emergent particle-hole symmetry of the super-

conducting state suggests that it is natural to expect a
reduction of the Hall and thermoelectric responses in the
anomalous metal and a tendency for them to vanish upon
approach to the QSMT. To explore this issue, simultaneous
measurements (Breznay and Kapitulnik, 2017) of ρxx and ρxy
were performed on InOx and TaNx films down to temperatures
well below the zero field Tc, and these were used to calculate
σxy. At the lowest temperatures (T ¼ 120 mK) ρxy and σxy
were indeed found to be immeasurably small for a broader
range of fields, including both the superconducting range and
the anomalous metallic range.
(2) The presence of significant superconducting fluctua-

tions in a system in which long-range superconducting phase
coherence has been lost can often be apparent in the finite
frequency response σðωÞ. Notionally, assuming that some

FIG. 13. Four-probe resistance (on a logarithmic scale) vs
inverse temperature of a monolayer WTe2 flake, which is tuned
by application of a gate voltage from a superconducting state
(seen for the highest electron density neff ¼ 20 × 1012 cm−2), to
an anomalous metallic state (when neff ¼ 12, 8.5, 6.7, 6.1, 5.6,
and 5 × 1012 cm−2), and finally to what appears to be a normal
metal when neff ¼ 4.6 × 1012 cm−2. From Sajadi et al., 2017.

FIG. 14. Resistivity (on a logarithmic scale) vs inverse temper-
ature as a function of the top gate voltage VTG from −0.36 to
1.80 V with fixed bottom gate voltage VBG ¼ 0 V in a
SrTiO3-LaAlO3 heterostructure. In this voltage interval the
electron concentration changes from 0.13 to 1.51 in units of
1013 cm−2. The estimation of concentrations is based on the high
field limit of the slope (between 13 and 14 T) for the Hall
resistivity vs magnetic field curves. The solid lines have been
added as guides to the eye. The asymptotic approach of the
measured curves to the temperature independent red lines as
T → 0 shows the existence of an anomalous metallic phase. From
Chen et al., 2017.
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form of dynamical scaling applies, the finite ω response
probes correlations at finite length scales. This strategy has
been successfully employed to establish the existence
of substantial finite-range superconducting correlations in
a-MoGe films (Yazdani et al., 1993; Yazdani, 1994) in a
magnetic field, where the high-frequency dynamics was
shown to behave as expected upon approach to an ideal
classical vortex lattice melting transition. Using a similar

approach, finite-range superconducting correlations were also
established for the cuprate high-temperature superconductors
in a range of temperatures above Tc (Corson et al., 1999;
Bilbro et al., 2011) and in the insulating state proximate to an
SIT in highly disordered InOx films (Crane et al., 2007).
Recently, the finite ω response of a magnetic field induced

anomalous metallic state in weakly disordered InOx films was
measured by Liu et al. (2013) and Wang et al. (2017). Here
broadband microwave measurements were performed in the
frequency range from 50 MHz to 8 GHz and the temperature
and magnetic field dependences of the complex microwave
conductance determined. Strongly non-Drude features are
observed in the anomalous metal regime. While intuitively
these features support the identification of this regime as a
failed superconductor, as far as we know no explicit theo-
retical account of these observations currently exists. Further
study, both theoretical and experimental, of the finite fre-
quency response is clearly warranted.

F. The strange case of granular films

For the most part, the properties of the anomalous metal
seen in all the studies so far discussed are similar, independent
of system morphology, degree of order, and whether or not a
magnetic field is applied. There is, however, another class of
systems, which are granular films in some not entirely well-
defined sense, which also show evidence of an anomalous
metallic phase, but of a very different character. Granular films
can be synthesized in various ways (Abeles et al., 1975;
Kapitulnik and Deutscher, 1982; Deutcher, Zallen, and
Adler, 1983). While local superconductivity can occur within
a single grain, global superconducting phase coherence
necessarily involves Josephson (pair) tunneling between
grains and thus is sensitive to various details of the grain
morphology and the nature of the material between grains
[see, e.g., Entin-Wohlman, Kapitulnik, and Shapira (1981),
Imry and Strongin (1981), and Ioffe and Larkin (1981)]. Here,
for completeness, we briefly discuss some such experimental
observations.
Pb films are a particular well-studied model system (Imry

and Strongin, 1981; Jaeger et al., 1989; Merchant et al.,
2001). Figure 17 shows data from Merchant et al. (2001) on
Pb films. As in the data on other granular materials shown
in Fig. 2, there is a clear signature of the onset of local
superconductivity within a “grain” at a relatively high T,
but then depending on the distance between grains (or more
particularly the Pb coverage), the system evolves from a
globally insulating to globally superconducting state.
Elegantly, in the present case, tunneling studies (not shown
here) on the same films show a clean BCS-like superconduct-
ing gap opening up at around the same temperature, largely
independent of the Pb coverage. Here the resistivity of films
with low Pb coverage [Figs. 17(a)–17(d)] shows a clear
tendency to diverge in the T → 0 limit and thus can be
characterized as insulating. However, there is an intermediate
regime of concentrations [Figs. 17(e) and 17(f) and possibly
Fig. 17(g)] in which the resistivity decreases strongly with
decreasing T, but it does so in a manner such that the T
dependence of ρ approximately follows the phenomenological
relation

FIG. 16. Normalized resistance as a function of temperature for
arrays of widely spaced Nb islands on a Au substrate. For
spacings exceeding 700 nm, the Brezinskii-Kosterlitz-Thouless
(BKT) transition is interrupted by a low-temperature metallic
state. The data for d ≤ 690 nm and d ≥ 740 nm come from
systems with Nb island heights of 125 and 145 nm, respectively.
From Eley et al., 2012.

FIG. 15. Sheet resistance (on a logarithmic scale) as a function
of temperature for different values of gate voltage VG measured
on a ∼5 nm thick La2CuO4þδ film. Gate voltages ranged from
1.2 V for the most insulating sample to 3 V for the most
superconducting one. The inset shows the less resistive samples
on a log-log scale, which expands the low-temperature portion of
the curves thereby making clear the saturation of the resistance at
low temperatures. From Garcia-Barriocanal et al., 2013.
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ρðTÞ ≈ ρ0 exp½T=T0�; ð2Þ

where ρ0 and T0 are T independent functions of the concen-
tration of Pb grains. In the case of Fig. 17(g), for example, ρ0
is roughly 4 orders of magnitude smaller than the normal state
resistivity. (See lines fit to the data in Fig. 17.)
Indeed, such behavior has been widely observed in thin

superconducting films. For instance, Merchant et al. (2001)
saw very similar behavior when the coupling between grains
of an insulating granular Pb film was gradually increased by
the addition of a thin layer of Ag. Behavior of this sort was
seen long ago in thin Al films by Masker, Marčelja, and Parks
(1969)]. While the fit to Eq. (2) implies the existence of an
intermediate metallic state (that is, the resistance extrapolates
to a finite value as T → 0), it is difficult to rule out a power-
law temperature dependence of the prefactor that could lead to
a vanishing resistance at some much lower temperature. More
importantly for present purposes, our understanding of the
anomalous metallic phase does not include a satisfactory
explanation of the expðT=T0Þ phenomenon. We will therefore
(reluctantly) not discuss it further in this article.

G. The issues of heating and nonequilibrium effects

Especially when the saturation of the T dependence of the
resistivity occurs at low temperatures, it is essential to
establish that this behavior is intrinsic and does not simply
represent a point below which nonequilibrium effects interfere
with the measurements. While this issue has been discussed

by each of the experiments reported, it is still worth briefly
enumerating some of the key issues a bit more explicitly.
Heating and other nonequilibrium effects can arise as a

consequence of uncontrolled external “noise.” Time-varying
electric fields couple via mutual capacitances (i.e., electro-
static coupling), and thus inject noise into the system as a
current source, while magnetic or inductive interference,
which arises from time-varying magnetic fluxes passing
through the measurement circuit, can induce fluctuating
voltage sources. Some of the systems reported above exhibit
saturation at sufficiently elevated temperatures where elec-
tron-lattice relaxation rates are high enough that the electron
temperature is probably not in question (see Figs. 9 and 15).
However, quantum transitions in general, and those involving
a metallic state more particularly, are much more sensitive
to details of disorder than are classical transitions. In certain
models, this can lead to the existence of quantum Griffith
phases (Fisher, 1992, 1995). As discussed in Appendix B and
Spivak, Oreto, and Kivelson (2008), such Griffith phases
cannot occur in the strict asymptotic sense. However, under
some circumstances, a broad intermediate region can arise
(Del Maestro et al., 2008, 2010; Vojta, Kotabage, and Hoyos,
2009) in which rare events dominate the macroscopic behav-
ior of the system. In such cases, where both the super-
conducting and the anomalous metal states are extremely
fragile, even weak perturbations may destroy these states.
Analog equipment, proper filtering, and electromagnetic

shielding are typically used to insure (and demonstrate) that
measurements are in the linear response regime [see, e.g.,
Ephron et al. (1996), and Mason and Kapitulnik (1999,
2001)]. On the other hand, it has been shown that in some
systems, in a range of parameters in which with proper
filtering the resistance can be seen to vanish as T → 0,
removing the filters results in saturation of the measured
resistivity at low T, giving the spurious appearance of a
metallic state (Tamir et al., 2018). This observation highlights
the continuing importance of testing the robustness of the
various observations. Additional measurements with the same
experimental conditions can also be used to test the validity of
the basic results. These include a comparison of the “effective
electron temperature” (measured independently) to the mea-
sured temperature as a function of the applied external
parameter [see, e.g., Fig. 4 from Ephron et al. (1996)], a
comparison of different conditions for the sample that for the
same temperature may or may not exhibit saturation [see, e.g.,
Bøttcher et al. (2018), where an anomalous metallic regime is
absent when the transition is driven by an in-plane magnetic
for the same sample], or measurements in the same cryostat
system, where nonsuperconducting samples with similar
resistance in the same measurement circuit and on the same
type of substrate yield consistent results with no signature of
heating (Ephron, 1996; Mason, 2001).
Nonetheless, we stress that these issues are significant and

complex. It is therefore important that continuing efforts be
made to directly measure the electron temperature in the
anomalous metallic regime and to mitigate the effects of any
external noise in each system in which such behavior is
observed. At the minimum, the fragility of the superconduct-
ing state proximate to the QSMT is suggestive of the existence

FIG. 17. Resistivity (on a logarithmic scale) as a function of T
for a sequence of granular Pb films. Each curve corresponds to
data at fixed Pb coverage, and the tuning from one curve to the
one immediately below it is accomplished by depositing a small
additional quantity of Pb on the previous film. Even in the
insulating films with the least Pb coverage (i.e., films a–d),
tunneling spectra reveal a well-developed superconducting gap,
and this gap is more or less the same even as additional Pb is
added, including the “metallic films” (i.e., films e, f, and g) and
the clearly superconducting films (i.e., films j and k). From
Merchant et al., 2001.
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of a highly inhomogeneous electronic structure. This is further
discussed in the Theory section next.

III. THEORY

A. The inadequacies of various “obvious” approaches

To begin with, we discuss a variety of theoretical approaches
to examine why they are not consistent with the observed
phenomena.

1. The inadequacy of classical percolation

One might think to account for the anomalous metallic
phase from considerations of classical percolation. Imagine a
system that consists of a macroscopic mixture of super-
conducting regions (with typical radius large compared to
the superconducting coherence length ξ) and metallic regions
with conductivity σD. The conductivity is then given by
σ ¼ σDFðxÞ, where x is the volume fraction of a super-
conductor, and FðxÞ is a dimensionless function. Above
percolation, x > xc, the conductivity is infinite for any x.
However, for x < xc, the conductivity is finite. While some
aspects of F depend on the details of the ensemble being
studied, in general (Stauffer and Aharony, 1994) FðxÞ → 1 as
x→0 and FðxÞ diverges as FðxÞ ∼ ðxc − xÞ−s as x approaches
xc from below, with s ¼ 4=3 in 2D and s ≈ 0.73 in 3D.
The conductivity of an almost percolating superconductor,

while finite, can be arbitrarily large. There are several reasons
why such an explanation cannot be invoked to account for
the observed anomalous metallic phases:
(a) In the framework of the classical percolation to satisfy

the condition that σ=σD ≫ 1, it is necessary that the system
be fine-tuned to the very close vicinity of the percolation
threshold xc. In the experiments reviewed earlier, σ=σD can be
as large as 104 which would require ðx − xcÞ ∼ 10−3. This is
difficult to reconcile with the relatively broad range of
parameters and circumstances over which the anomalous
metal is observed.
(b) For a classical percolation picture to hold, the distance

between superconducting puddles must be larger than
min½LT; LB�, where LT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏD=kBT
p

is the normal metal

coherence length, and LB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ0=2πB

p
is the magnetic

length. (Φ0 is the flux quantum.) An inevitable corollary of
this picture is that at low enough temperatures, such that LT
grows to be larger than the typical spacing between super-
conducting regions, global superconducting coherence will be
established, leading to a further growth of σ and a super-
conducting ground state. Manifestly, to describe the quantum
superconductor-metal transition at T ¼ 0 one has to take into
consideration quantum fluctuations of the order parameter.
(c) It can be shown (Stroud and Bergman, 1984) that the

effective Hall conductivity in a 2D metal-superconductor
mixture is the same as that of the metallic component,
independent of x for x < xc. Where this expectation has been
tested in InOx and TaNx films (Breznay and Kapitulnik,
2017), it has been found that σxy of the anomalous metal is
much smaller than its Drude value.
(d) Finally, there is good reason to doubt that such

macroscopic inhomogeneities occur in many of the systems

already discussed. Some of these systems consist of ordered
arrays of superconducting dots on metallic substrates, and
others consist of metallic films whose structural and chemical
homogeneity has been scrutinized using various probes. It
seems unlikely that there is a hidden inhomogeneity in the
structures of these systems on the requisite length scales to
justify a percolation analysis.

2. The inadequacy of “conventional” fluctuation
superconductivity

The theory of classical superconducting fluctuations upon
approach to a transition with a finite Tc is well developed. [For
a review, see Larkin and Varlamov (2005)]. In some sense this
would seem to provide a prototype for the properties of an
anomalous meal. Indeed, the fact that the growing super-
conducting correlations allow an increasing portion of the
current to be carried by collective Cooper pair fluctuations
leads to a contribution to the conductivity that diverges as
T → Tc. Moreover, since bosonic fluctuational Cooper pairs
have a size which diverges as T → Tc, they are not subject to
the single-particle interference effects that lead to the weak
localization.
There are problems with using this approach to explain

properties of the anomalous metal regime: The width of the
regime in which fluctuational effects are significant δT ∼
TcG ≪ Tc is controlled by the Ginzburg-Levanyuk parameter
(Levanyuk, 1959; Ginzburg, 1961) G≡ 1=Nξ ≪ 1. Here

Nξ ¼ νΔξD ð3Þ

can be interpreted to be the number of electrons per coherence
volume that are paired upon entering the superconducting state,
ν is the metallic density of states at the Fermi energy, and Δ
and ξ are, respectively, the typical gap magnitude and the
superconducting coherence length in the superconducting
ground state. In many conventional superconductors G is
small. For example, in quasi-2D samples with statistically

uniform disorder, G ∼ e2=ℏσð2DÞD . [See, for example, Larkin and
Varlamov (2005).] Note that the celebrated Aslamazov-Larkin
(Aslamazov and Larkin, 1968) and Maki-Thompson (Maki,
1968; Thompson, 1970) corrections to the Drude conductivity
are calculated in the temperature interval ðT − TcÞ=Tc ≫ G,
where they are small. Moreover, these fluctuation corrections
exhibit strong temperature dependence as T → Tc, while the
measured conductivity in the anomalous metal regime is
temperature independent at the lowest temperatures.

3. The inadequacy of local bosonic theories

A theoretical treatment of the transition to a superconduct-
ing state can always be treated in terms of an effective action
Seff ½Δ� that is a functional of a charge 2e complex scalar
field Δ. Formally, Seff can be obtained from a microscopic
electronic Hamiltonian by introducing Δ as a Hubbard-
Stratonovich field and then integrating out the fermionic
electronic degrees of freedom. However, physically there is
an important distinction between cases in which Seff is a local
functional, when it can be expressed in terms of an integral
overΔðr; tÞ and its derivatives, or a nonlocal functional. In the
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former case, the low-energy long-wavelength degrees of
freedom can be thought of as “purely bosonic.” In the latter
case, the nonlocality reflects the existence of gapless, delo-
calized fermionic degrees of freedom that need to be taken
into account in one way or another; under these circumstances,
the procedure of integrating out the fermionic modes is a
formal trick that can be misleading.
The conventional Landau-Ginzburg-Wilson treatment of

classical finite temperature phase transitions is an example of a
purely bosonic theory.5 Seff is “local” in an interval of
temperatures near Tc, and on spatial scales larger than the
coherence length of the normal metal LT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏD=kBT
p

evaluated at T ¼ Tc. In other words Seff can be expanded
in terms of Δðr; tÞ and its time and space derivatives. This
follows from the fact that the various fermionic response
functions that enter Seff decay exponentially on scales larger
than LT . It thus seems natural that the same considerations can
be applied to zero temperature quantum phase transitions.
However, in the case of a QSMT, LT → ∞. Consequently, the
various electron response functions exhibit power-law decays
at long distances and hence Seff ½Δ� is nonlocal.
In the cases we have discussed in which an anomalous

metal phase is observed, the single-particle states are pre-
sumably gapless.6 Thus, no purely bosonic theory is adequate.
Currently there are no generally reliable methods to treat

nonlocal actions. This is not to say that it is never reasonable
to approach the problem from this perspective. Studies of
metallic criticality based on the Herz-Millis (Hertz, 1976;
Millis, 1993) theory adopt such an approach. In the context of
the QSMT, there is a class of model problems which
correspond to a quantum version of the phenomenologically
defined resistively shunted Josephson junctions (RSJ) model,
for which the theoretical solution is clear as discussed in
Appendix A.1.
A purely bosonic description may well be possible in a

system consisting of superconducting grains coupled by tunnel
junction systems such that below a “mean-field” transition
temperature there is a negligible density of low-energy fer-
mionic excitations. In this case, a conventional action describ-
ing Josephson-coupled superconducting grains supplemented
with a quantum capacitance term describing the quantum
dynamics of the phase of the order parameter is appropriate.
Typically, a proper treatment of such an action yields a quantum
superconductor-insulator transition (Fisher, 1986).

4. How BCS theory implies the absence of quantum critical
fluctuations at H = 0 in systems without competing interactions

It is natural to associate the anomalous metal with growing
ground-state superconducting correlations as a QSMT is

approached from the metallic side. In Sec. III.B we will
discuss theoretically tractable circumstances in which the
requisite quantum fluctuations indeed occur. First, however,
we discuss why even the existence of a quantum critical regime
in the absence of magnetic field is an issue. Specifically,
because the uniform susceptibility of a Fermi liquid diverges
(logarithmically) as T → 0, even in the presence of weak
disorder, any net attractive interaction generally leads to a
superconducting ground state. Conversely, weakly repulsive
interactions are “irrelevant” and thus can be treated perturba-
tively. According to this line of reasoning, the QSMT occurs
when the effective interactions vanish.
Since this is an important point of perspective, let us

consider the QSMT in the context of the Hamiltonian

H ¼ H0 −
Z

druðrÞΨ†
σðrÞΨðrÞ†−σΨ−σðrÞΨσðrÞ; ð4Þ

where ψ†
σðrÞ creates an electron with spin polarization σ

at position r, and the sign convention is chosen such that
uðrÞ > 0 corresponds to a local attractive interaction between
electrons. In generalized BCS mean-field theory, the local gap
parameter is determined self-consistently in terms of the
anomalous expectation value of the pair-field creation oper-
ator according to

hΔðrÞi≡ −uðrÞhψ↑ðrÞψ↓ðrÞi; ð5Þ

where hi represents the quantum mechanical average. Thus,
the mean-field superconducting transition temperature Tc
(if it exists) is the temperature below which the largest
eigenvalue λðTÞ of the linearized gap equation

λðTÞΔðrÞ ¼ −uðrÞ
Z

dr0Kðr; r0ÞΔðr0Þ ð6Þ

is larger than 1, i.e., λðTcÞ ¼ 1 and λðTÞ > 1 for T < Tc. Here
Kðr; r0Þ is the nonlocal order parameter susceptibility, which
for noninteracting electrons (or, more generally, for a Fermi
liquid) can be expressed in terms of a convolution of single-
particle Matsubara Green’s functions,

Kðr; r0Þ ¼ T
X
ω

Gωðr; r0ÞG−ωðr; r0Þ; ð7Þ

where ω ¼ ð2nþ 1ÞπT. At finite temperature Kðr; r0Þ ∼
jr − r0j−ðdÞ for jr − r0j ≪ LT and Kðr; r0Þ ∼ e−jr−r0 j=LT for
R ≫ LT . The essential feature is that K is a decreasing
function of jr − r0j which falls sufficiently slowly with
distance that its integral diverges as T → 0:

Z
dr0Kðr; r0Þ ∼ ν log½EF=T�: ð8Þ

This is nothing more than a reflection of the Cooper
instability of a Fermi liquid. That this relation is true even
in the presence of disorder (at least out to distance scales
comparable to the localization length, if the electronic
states are weakly localized) is the essence of “Anderson’s
theorem” (Anderson, 1959).

5While strictly speaking the notion of statistics does not enter the
discussion of classical critical phenomena, order parameters always
correspond to an even number of electron creation operators and so
are “bosonic.”

6This conclusion is readily supported on theoretical grounds.
Direct experimental evidence exists in various specific cases—for
instance, a substantial zero energy density is seen in planar tunneling
experiments on SrTiO3=LaAlO3 heterostructures, similar to those
reported in Fig. 14. (Fillis-Tsirakis et al., 2016).
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To slightly belabor the point, note that a variational lower
bound to λðTÞ can be obtained by considering a trial state
ΔðrÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uðrÞ=ūp
Δ, which yields

λðTÞ ≥ Ω−1
Z

drdr0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðrÞuðr0Þ

p
Kðr; r0Þ; ð9Þ

where Ω is the “volume” (area in 2D) of the system and ū is a
suitable average of uðrÞ. This gives a lower bound to the mean
field Tc ≥ EF expð−1=ūνÞ, which is manifestly nonvanishing
for any ū > 0. Further, since for small ū the associated zero
temperature coherence length is exponentially long, the
assumption that the pairing amplitude is uniform is self-
consistently validated as all finite length-scale inhomogene-
ities are averaged out. (In the literature, this is sometimes
referred to as the “Cooper limit.”) Finally, the fact that the
usual (thermal) Ginzburg-Levanyuk parameter diverges as
ū → 0 implies that the mean-field estimate of Tc becomes
asymptotically exact.
More realistic models, for instance, those involving low-

energy attractive and high-energy repulsive interactions, when
treated using the usual diagramatic approach give rise to the
same conclusion: the QSMT is driven by a change in sign of
the effective interaction. Consequently, the effective interac-
tion vanishes identically at the point of the quantum phase
transition.
As already mentioned, in 2D even for kFl ≫ 1, all single-

particle states are localized (Abrahams et al., 1979; Gorkov,
Larkin, and Khmelnitskii, 1979; Lee and Ramakrishnan,
1985), so the divergence of λ0ðTÞ is cut off below T ∼ T⋆,
defined in Eq. (1). In principle, this could result in a
nonvanishing interaction strength at criticality. However,
the corresponding critical regime is parametrically narrow
and any critical effects would be confined to exponentially
low temperatures T ≲ T⋆. Thus, for clean metals, these
considerations are of no practical importance. (We will return
to the issue of localization in Sec. IV.)
When localization physics can be neglected, it is not so

much a question of why the metal is not an insulator as how
can one understand the existence of a “failed superconductor”
in which strong superconducting correlations develop below
a nonzero crossover scale, but the ground state fails to be
globally phase coherent. In the next section, we will show how
this can arise in the case in which uðrÞ is attractive in some
regions of space and repulsive in others. In Sec. IV we discuss
other possible origins of critical fluctuations near a QSMT.

B. Theory of the QSMT in granular systems

In order to construct a theory of the quantum critical regime
near a QSMT, it is necessary to identify loopholes in the
considerations already outlined that lead to a breakdown of
BCS theory. One route is to identify processes that cut off the
divergence of the superconducting susceptibility in the met-
allic state, Eq. (8). Another is to consider the case in which
there are competing attractive and repulsive interactions, or
where a magnetic field cuts off the divergence of the
susceptibility so that the QCP occurs at a point in the phase
diagram at which interactions have non-negligible effects.

In this section, following the analysis of Feigel’man and
Larkin (1998), Spivak, Zyuzin, and Hruska (2001), and
Spivak, Oreto, and Kivelson (2008), we consider the
QSMT in a system with a spatially nonuniform uðrÞ. This
provides an important theoretical paradigm that explains how
in principle at zero temperature the conductivity can diverge
upon approach to the point of the quantum phase transition.
As far as we know, these are the only solvablemicroscopically
plausible models of a QSMT with an observable quantum
critical regime.

1. Strategy of solution

The system we analyze consists of far separated super-
conducting puddles embedded in a normal metal background.
We consider the limit in which the distance between puddles
is large compared to their size, as this separation of scales
permits a controlled theoretical approach to the problem. To
begin with, we compute the zero temperature superconducting
susceptibility of an isolated puddle χj. Consistent with general
expectations, this susceptibility is always finite, but it can
depend exponentially on characteristic properties of the puddle
and so can be very large. Then we compute the Josephson
coupling Jij between pairs of puddles i and j. Importantly, Jij
reflects the quantum diffusion of Cooper pairs through the
normal metal and so falls relatively slowly with the separation
between puddles, in sharp contrast to the behavior of the
Josephson coupling through an insulating region.
What enters thermodynamic considerations is the dimen-

sionless coupling between puddles

Xij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jχiJijχjJjij

q
: ð10Þ

Two puddles fluctuate essentially independently of each
other if jXijj ≪ 1, and they are phase locked to each other
if jXijj ≫ 1. The quantum transition to a globally phase-
coherent state occurs at the point at which an infinite cluster of
puddles is coupled together by links with jXijj≳ 1. At slightly
larger mean spacing between puddles, large clusters of
puddles are still phase locked, which thus implies the
existence of significant quantum critical effects.
Note that for this procedure to be valid the sum

P
jJij

must be convergent. At any nonzero T, J falls exponentially
with distance Rij between grains, so convergence is guaran-
teed. However, at T ¼ 0, and for repulsive uN > 0,
Jij ∼ 1=jRijj−Dð1þ uN ln2 RijÞ. In the special case in which
there are no interactions in the normal metal (uN ¼ 0) the
sum is logarithmically divergent and the ground state is thus
always superconducting. Thus the sum is convergent and the
transition exists only because of the repulsion in the nor-
mal metal.
Since most experiments on the anomalous metal are on 2D

devices, we will consider this case.

2. Model of superconducting puddles in a metal

Let us consider an s-wave superconducting grain that is
embedded in a normal metal. For simplicity we consider the
following spatial structure of the electron interaction:
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uðrÞ ¼
�
uS > 0 for jrj < R;

uN < 0 for jrj < R.
ð11Þ

Here uS and uR are the interaction constants in the super-
conductor and in the normal metal, respectively. It follows
from general statistical mechanical considerations that the
quantum mechanical average of the order parameter of a zero-
dimensional system hΔi ¼ 0.
Theoretical investigation of the correlation function of the

fluctuations of the order parameter has a long history. Here
we briefly summarize the main results. At the mean-field level
there exists a critical puddle radius Rc, such that for R > Rc
there is a nonzero solution of the mean-field equations
[Eq. (5)], while for R < Rc no such solution exists. So long
as there is no reflection at the puddle boundary we get Rc ∼ ξ,
where ξ is the superconducting correlation length of a bulk
superconductor with the interaction constant uS. The character
of the superconducting quantum fluctuations are quite differ-
ent depending on whether R is less than or greater than Rc.

3. Large puddles with R ≫ Rc

For puddles with R ≫ Rc, there is a T ¼ 0 mean-field
solution for the order parameter with ΔMFðrÞ ≈ Δ0 for jrj < R
and ΔMFðrÞ ¼ 0 otherwise. In this case the quantum fluctua-
tions of the modulus of the order parameter can be neglected,
the order parameter on an individual superconducting puddle
can be parametrized as Δi ≡ jΔ0jeiϕi , and the quantum
dynamics of the system can be described in terms of phase
variables alone. The corresponding phase fluctuations in the
ith puddle can be described by the action introduced by
Chakravarty (1982)

Si½ϕi� ¼ −
Geff

i

ð2πÞ2
Z

dtdt0
sin2fð1=4Þ½ϕiðtÞ − ϕiðt0Þ�g

ðt − t0Þ2 . ð12Þ

Here Geff
i ≫ 1 is an effective conductance of the medium

measured in units of e2=ℏ. As a result7

he−iðϕiðtÞ−ϕið0ÞÞi ¼

8>>><
>>>:

1

jτj1=Geff
i

for τ ≪ τ�;

�
τ�

τ

�
2

for τ ≫ τ�i ;
ð13Þ

where

τ�i ∼ τ0 expð2π2Geff
i Þ ð14Þ

and

χi ∼ τ�i : ð15Þ

The definition ofGeff in Eq. (12) requires clarification. This
expression is derived by considering the dynamical screening
of charge fluctuations in the superconducting puddle by the
surrounding metal. In the 3D case, Geff ∼ ℏνDRi is the two
terminal conductance in units e2=ℏ, which is obtained if one
lead is put inside the superconducting puddle and the other
is placed on a boundary at infinity. In the 2D case, the
conductance defined in this way vanishes in the thermody-
namic limit. A more delicate analysis (Feigel’man, Larkin,
and Skvortsov, 2001) shows that

Geff ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σð2DÞD ℏ=e2

q
. ð16Þ

In this case, Geff is independent of the puddle size.
The action describing a collection of large puddles

embedded in a metal has the form

S ¼
X
i

Si½ϕi� þ Sint½fϕg�; ð17Þ

where Sint ¼
R
dtHint and

Hint ¼ −
1

2

X
i≠j

J̃ij cosðϕi − ϕjÞ ð18Þ

is the Josephson Hamiltonian. In the case where the intergrain
distance is larger than the zero temperature superconducting
coherence length the intergrain coupling is given by a con-
ventional Cooperon (ladder) diagram (Abrikosov, Gor’kov,
and Dzyaloshinski, 1975) which in 2D has the form

J̃ij ¼
ℏ
2e

σ2D
D
R2

R2

jrijj2½1þ 2uN ln ðjrijj=RÞ�2
: ð19Þ

Note that for uN > 0, the sum over couplings Eq. (19),
between remote junctions converges,

P
jJ̃ij < ∞, as required.

However, in the limit uN ¼ 0, this sum diverges, consistent
with our earlier observation that the existence of both
attractive and repulsive interactions is a necessary condition
for the existence of a critical regime.

4. Near critical puddles with jR−Rcj ≪ Rc

The value of Rc can be obtained from the linearized mean-
field self-consistency equation

F0ðrÞ ¼ −uðrÞ
Z

dr1Kðr; r1ÞF0ðr1Þ; ð20Þ

which has a solution with nonzero F0 when R ¼ Rc. We can
normalize F0 such that

R jF0j2dr ¼ 1, and we chose a phase
convention such that F0ð0Þ is real and positive.
For R < Rc so long as Rc − R ≪ Rc, the important fluc-

tuations can be parametrized as Δðr; tÞ ¼ αðtÞF0ðrÞ; the
fluctuations of the shape of Δðr; tÞ can be neglected and
one needs only to calculate the correlation function of the
complex amplitude αðtÞ. This is given by the ladder diagrams

7The fact that in both limits the correlation functions (13) and (21)
decay at large times as 1=t2 is a manifestation of a more general
principle: whenever the retarded Green’s function decays exponen-
tially with time, the causal Green’s function decays inversely
proportional to time squared.
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[see, for example, Abrikosov, Gor’kov, and Dzyaloshinski
(1975)]

hαiðωÞα�i ð−ωÞiC ¼ 1

ντ0ð−ijωj þ 1=τ�i Þ
; ð21Þ

which in the t representation gives

hα�i ð0ÞαiðtÞiC ¼

8>>><
>>>:

1

ντ0

�
τ�i
t

�
2

for τ�i ≪ τ0;

1

ντ0
i½−iπ þ 2 lnðt=τ�i Þ� for τ�i ≫ τ0.

ð22Þ

Here the subscript C refers to the casual (time ordered)
Green’s function, τ0 ¼ min½Rc=vF;R2

c=D� is the time of
electron flight through the grain, and

τ�i ¼
τ0R

Rc − Ri
. ð23Þ

As a result we get an estimate for the superconducting
susceptibility of the grain

χi ¼
Z

dthα�i ð0ÞαiðtÞiC ∼
τ�i
ντ0

. ð24Þ

Alternatively one can get the same results for the correlation
function using the nonlocal in time effective action obtained
by integrating out the fermionic modes which when expanded
up to quadratic terms in αiðtÞ is

Si½αi� ¼ ντ0

Z
dω
2π

�
−ijωj þ 1

τ⋆i

�
jα̃iðωÞj2; ð25Þ

where α̃i is the Fourier transform of αi.
Equations (22), (24), and (25) are valid even for Ri > Rc as

long as the amplitude of the fluctuations of the order
parameter is larger than its mean-field value squared

hjδΔij2i ≈ hjΔið0Þ − Δiðt ∼ τð�Þi Þj2i
∼ 1=νR2

cτ0 ∼ Δ2
0=σ2D ≫ Δ2

MF ∼ Δ2
0½ðRi − RcÞ=Rc�;

and the nonlinear terms in the action can be neglected. Here
Δ0 is the value of the order parameter in a bulk sample with
interaction constant uS.
In the opposite limit, hjδΔij2i ≪ Δ2

MF we have

τ�i ∼ exp

�
Δ2

MF

hjδΔij2i
�
. ð26Þ

To describe a system of superconducting puddles embedded
into a metalic host we can use the effective action S½fαg� ¼P

iSi½αi� þ Sint½fαg�, where

Sint ¼ −
X
ij

Z
dt½Jijα⋆i αj þ c:c.� þ b

X
i

Z
dtjαij4; ð27Þ

where b ∼ R2
cν=aD2, and a ≪ ξ is the film thickness. Since

the quantum fluctuations of the phase of the order parameter
are slow compared to the interpuddle electron propagation,
the Josephson coupling energy can be calculated using the
conventional Cooperon (ladder) diagram (Abrikosov,
Gor’kov, and Dzyaloshinski, 1975) which in 2D gives

Jij ¼
νR2

jrijj2½1þ 2uN ln ðjrijj=RÞ�2
. ð28Þ

Again the essential feature is the logarithmic correction
to the long-distance falloff, which makes the sum over Jij
convergent.

5. Effect of magnetic field on Jij

The expressions for Jij and J̃ij are somewhat more
complicated in the presence of a magnetic field and/or at
finite temperature, in which cases they acquire additional
factors Jij → F ijJij and J̃ij → F ijJ̃ij, where

F ij ∼ exp

�
−
rij
LT

�
exp

�
−
rij
LB

�
expðiγijÞ; ð29Þ

where LT ¼ min½vF=T;
ffiffiffiffiffiffiffiffiffiffi
D=T

p � is the coherence length of the
normal metal, LB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏc=eB
p

is the magnetic length, and

γij ¼ ðhc=eÞ R j
i AðrÞ · dr is a gauge-dependent phase factor.8

In this case, the sum over Jij is convergent, even without the
logarithmic correction due to nonzero uN , so the system can
exhibit QSM transition with a critical region even without
competing electron interactions.

6. Quantum critical region

To illustrate the implications of the above analysis, let us
consider the case in which there is a single characteristic
puddle size R, and the SMT is driven by changing the
concentration of puddles. The critical puddle concentration
is thus determined according to χJðrÞ ∼ 1, where χ is the
single puddle susceptibility and r is the typical distance
between neighboring puddles. We are on secure theoretical
grounds in all our considerations if the metallic portion of the

8If the metal is disordered, then the Josephson couplings Jij
exhibit sample specific mesoscopic fluctuations, which in the
presence of the magnetic field and at T ¼ 0 decays only as a power
law of the distance ⟪J2ij⟫ ∼ 1=jrijj6 (Spivak and Zhou, 1995; Zhou
and Spivak, 1998). Here double brackets stand for both the quantum
mechanical averaging and the averaging over random scattering
potential configurations. However, here we are mainly interested in
samples with good conductances where the relative amplitude of
these fluctuations is small. Therefore in what follows we neglect
mesoscopic effects of this sort.
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system is relatively clean, so that kFl ≫ 1 (i.e., in 2D, when

σð2DÞD ≫ e2=h).
If in addition R ≫ Rc, this means that χ is exponentially

large, and hence that the Josephson coupling at criticality is
exponentially small. Therefore in the anomalous metallic
regime proximate to the QCP, the temperature below which
the T-independent regime can be reached is correspondingly

small. If jðR − RcÞ=Rcj ≪ e2=ℏσð2DÞD , and if the magnitude
of uN in the metal between the superconducting droplets
is sufficiently large, then the criterion χJ ∼ 1 yields
ðτð�Þ=τ0Þ2ðR2NDÞ ∼ 1. Here ND is the concentration of
puddles. In this case, the critical regime is of the order of
Oð1Þ both in concentration and in temperature. However,
satisfying this condition seemingly involves a certain amount
of fine-tuning of the puddle geometry, which appears to be
at odds with the robustness of the observed phenomena. This
is a worrisome shortcoming of the model.

7. Magnetic field driven QSM transition

The absence of a quantum critical regime discussed in
Sec. III.A.3 ultimately reflects the long-range (power-law)
falloff of the Cooperon correlation function in the normal
metal at T ¼ 0. However, in the presence of a magnetic field,
these correlations are cut off at the magnetic length. Therefore,
in principle, a quantum critical region may exist. In the case of
statistically uniform disorder the solution of the mean-field
equations has a form of Abrikosov lattice [see, for example,
Abrikosov (1988)]. If the magnetic field is close to Hc2 at
T ¼ 0 one can write the mean-field Gizburg-Landau equation
for ΔðrÞ, which solution gives us

Δ̃2ðHÞ ∼ Δ2
0

Hc2 −H
Hc2

; ð30Þ

where the tilde indicates averaging of the modulus of the order
parameter over a period of vortex lattice [see, for example,
Abrikosov (1988)].
Beyond the mean-field approximation the classical

transition sometimes turns out to be the first order
(Herbut and Tešanović, 1995). However, the first order
is forbidden in disordered 2D samples (Imry and Wortis,
1979; Aizenman and Wehr, 1989; Hui and Berker, 1989;
Goswami, Schwab, and Chakravarty, 2008). Ultimately, in
high conductance samples the transition is controlled by
the formation of rare droplets which are connected by
Josephson junctions (Zhou and Spivak, 1998; Spivak,
Oreto, and Kivelson, 2008).
However, for this article it is sufficient to say that in the

2D case the width of the critical region as a function of the

magnetic field is controlled by the conductance of the film σð2DÞD
[see, for example, Blatter et al. (1994)]. Therefore, it is narrow
in samples with large conductance. Indeed, the amplitude of
quantum fluctuations of the order parameter in metal, averaged
over an area of order L2

Bc2
, is given by a standard Cooperon

diagram (Abrikosov, Gor’kov, and Dzyaloshinski, 1975)

hδΔ2i ∼ Δ0

νL2
Bc2

∼
e2Δ2

0

ℏσð2DÞD

. ð31Þ

Thus we arrive at the conclusion that the interval of
magnetic field where quantum fluctuations of the order
parameter are important is

jH −Hc2j
Hc2

∼
e2

ℏσð2DÞD

≪ 1. ð32Þ

In other words Eqs. (30), (31), and (32) imply that in highly
conductive samples not very close to Hc2, vortices remain
macroscopic objects, and their quantum tunneling probability
is negligible.
In Sec. IV we will discuss the significance of this result for

interpretation of experiments.

8. Role of disorder and Griffiths phenomenon

We conclude this section with a short remark about some
possible consequences for the QSMTof rare events associated
with certain types of disorder. Note, however, that the wide
variations in the character of the disorder of the experimental
platforms that exhibit an anomalous metallic phase already
suggest that such effects are unlikely to be of central
importance.
In classical phase transitions the role of disorder has been

discussed in detail in the past. For example, a degree of
randomness in the local Tc’s can shift the ordering temper-
ature and in some cases can change the universal critical
exponents at a transition, but leaves the character of the phases
and the general nature of critical scaling intact. In addition, in
the neighborhood of any critical point in a disordered system,
there are universal “Griffiths phenomena”: Even for sta-
tistically uniform disorder, due to mesoscopic variations in
the local disorder configuration there always exist rare regions
that are effectively on one side of the critical point even though
the bulk of the system is on the other. In classical systems (i.e.,
for finite T transitions), this is largely an academic issue, as
these rare regions lead to extremely subtle and difficult to
detect effects.
The effects of rare regions can be much more important in

the neighborhood of a quantum critical point and especially in
a metallic system. In the present context, the essential point is
that according to Eq. (14), the susceptibility of an individual
grain depends exponentially on its properties (i.e., on Geff ).
Consequently the existence of dilute rare droplets in which the
electronic properties differ from average (e.g., in which Geff is
anomalously large) can have an enormously amplified effect
on the physics close to the QSMT. This can lead to significant
spatial inhomogeneities in the electronic properties and the
relevance of a percolation analysis even in otherwise highly
homogeneous materials.
The superconducting puddles previously discussed can

arise from such considerations. However, as shown by
Spivak, Oreto, and Kivelson (2008), this amplification is
typically not sufficient to lead to a true quantum Griffith phase
(Fisher, 1992, 1995) in which the superconducting suscep-
tibility would diverge in a range of parameters proximate to
the quantum critical point. In order for this to happen, the
susceptibility of an anomalously large puddle would need to
diverge exponentially with its “volume” (its area in 2D).
Conversely, in most situations relevant to the present
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discussion, in any puddle that is large compared to the
superconducting coherence length, the relevant value of
Geff grows at most in proportion to the surface area (the
circumference in 2D) of the puddle.9

C. The QSMT of a d-wave superconductor

One might expect that the symmetry of the superconducting
state could have important consequences for the nature of the
quantum critical phenomena associated with its demise. For
instance, the sign of the Josephson coupling between two
d-wave grains can be either positive or negative depending on
the orientation and shape of the grains and the character of the
intervening metal. Random Josephson couplings can lead to
the existence of a superconducting glass phase with all the
complexity so implied. Thus, at least at zero magnetic field,
one might expect that the nature nonsuperconducting state is
different proximate to an s-wave or a d-wave superconductor.
However, while many aspects of the more general theory

remain to be developed, it is possible to argue that in some
range of parameters the nature of the anomalous metal phase
originating from a d-wave superconductor is similar to the
s-wave case. In particular, the phase diagram of a system of
d-wave superconducting grains of random shape with R ≫ Rc
in a metallic matrix has been discussed by Spivak, Oreto,
and Kivelson (2008, 2009) and Kivelson and Spivak (2015).
While each grain has dominantly d-wave pairing, an admix-
ture of an s-wave component is implied by the (generically)
asymmetric character of each grain—effectively each grain is
either a dþ s or a d − s wave superconductor. When the
grains are close to one another, the Josephson couplings have
a sign structure that generically leads to frustration and,
presumably, the complex physics associated with an XY-spin
glass. However, the longest-range portion of the Josephson
couplings connected the subdominant s-wave components.
This results in a situation analogous to that which arises in
the Mattis model, in which the couplings between the
d-wave components are random in sign, but in a way that
is thermodynamically equivalent to a ferromagnet (i.e., no
frustration). In effect, while the superconducting order is
locally d wave, on distance scales of the order of the distance
between grains and longer, it is only the s-wave component
of the order that matters. Thus, the physics of the QSMT
transition is identical in the two cases.

IV. CONCLUSIONS

In view of the number and diversity of systems in which
very similar phenomena have been seen in experiment, we
feel that the case for the existence of an anomalous metallic
phase proximate to a QSMT is compelling. This conclusion

contradicts the widespread “belief,” based on perturbative
considerations, that no metallic phase can exist in 2D.
The theory of conventional superconducting grains

embedded in a weakly interacting metal establishes the fact
that such a metallic phase is a valid theoretical possibility. The
anomalous metal regime close to the point of the QSMT is
very different from a normal Fermi liquid. It is characterized
by values of conductivity that diverge upon approach to the
transition. However, it seems to us difficult from this approach
to account for the robustness of the anomalous metal to
variation of circumstances (e.g., whether the QSMT occurs in
disordered films, crystalline flakes, or engineered Josephson
junction arrays) and for its extension over a relatively broad
range of temperatures and quantum tuning parameters.
On a phenomenological level, fluctuational contributions to

the conductivity near classical and quantum phase transitions
are similar [see, for example, Aslamazov and Larkin (1968),
Maki (1968), Thompson (1970), Blatter et al. (1994), Larkin
and Varlamov (2005), and Davison et al. (2016)]. However, in
our opinion the central problem in the area is the microscopic
origins of the QSMT.
The theory in which the QSMT is driven entirely by

quantum fluctuations of the order parameter of superconduct-
ing grains embedded in a metal can qualitatively reproduce the
salient experimentally observed features of the anomalous
metal regime. Note that such grains could arise directly as a
consequence of sample inhomogeneities, or arise as an
intrinsic feature of the electronic structure. For instance, the
interaction between superconducting (SC) and another form
of order generally enhances the effects of even weak structural
inhomogeneities. In many unconventional superconductors,
the superconducting state occurs in close association with
charge-density-wave (CDW) phases. While the coupling
between the SC order parameter and quenched disorder is
constrained by gauge invariance, disorder necessarily destroys
long-range incommensurate CDW order, leading to an inho-
mogeneous state with Larkin-Ovchinnikov-Lee-Rice-Imry-
Ma domains (Imry and Ma, 1975; Larkin and Ovchinnikov,
1979; Lee and Rice, 1979). Consequently, if there is strong
coupling between the CDW order and the SC order, this can
lead to an intrinsically granular SC state.
However, there are reasons to question whether any

granular picture can provide an adequate (semi)quantitative
account. The central reason is that the underlying Ginzburg-
Levanyuk parameter is typically small. In the case of large

grains R > Rc and large σð2DÞD , it follows from Eqs. (14), (15),
and (19) that the critical concentration of superconducting
grains at the point of the QSMT is exponentially small; this
situation is realized, for example, in the experiments of
Bøttcher et al. (2018). Consequently, genuinely quantum
critical effects should be observable only at exponentially
low temperatures.
The situation may be somewhat better if the grain’s radius

is close to the critical one jR − Rcj=Rc ≪ ℏσð2DÞD =e2. This,
however, requires fine-tuning of the puddle geometry which
seems to be at odds with the robustness of the experimentally
observed phenomena. Moreover, even here the temperature

range is small in proportion to ℏσð2dÞD =e2. In principle, in the
case of a magnetic field driven QSMT, it is also possible to

9It was correctly shown by Del Maestro et al. (2008, 2010) and
Vojta, Kotabage, and Hoyos (2009) that a true quantum Griffith phase
occurs in a disordered version of a phenomenological model of an
array of resistively shunted Josephson junctions discussed in Ap-
pendix A.1; while this may well capture correct intermediate scale
physics, we argue in that Appendix that ultimately the quantum
Griffith phase is a consequence of an unphysical aspect of the model
itself.

Kapitulnik, Kivelson, and Spivak: Colloquium: Anomalous metals: Failed …

Rev. Mod. Phys., Vol. 91, No. 1, January–March 2019 011002-19



consider a theoretical approach based on the quantum melting
of the vortex lattice. However, as discussed in Sec. III.B, in
addition to providing no insight into the anomalous metal
observed in zero magnetic field, we think it is likely that this
type of theory will encounter similar quantitative problems in
accounting for the breadth of the anomalous metallic regime.
For example, the magnetic field driven anomalous metal

regime has been observed in samples with σð2DÞD as large as
∼40e2=ℏ in Mason and Kapitulnik (1999, 2001). In the
absence of a magnetic field, the gate voltage driven anomalous

metal regime has been observed in samples with σð2DÞD ∼
26e2=ℏ by Chen et al. (2017) and Bøttcher et al. (2018).
This leads us to speculate that a satisfactory understanding

of the anomalous metal will involve augmenting the conven-
tional Fermi liquid description of metals in ways that go
beyond just including the effects of quantum fluctuations of
the superconducting order parameter itself. For instance,
it is possible that the presence of slow (quantum) dynamical
fluctuations associated with a proximate broken symmetry
state might give rise to intrinsic effects that are similar to those
associated with static granular structures in the model problem
we have discussed. [Indeed, an inspiring study of the super-
conducting instability in the neighborhood of a class of QCPs
(Raghu, Torroba, and Wang, 2015) found an associated
QSMT that occurs at a finite mean BCS coupling—just the
sort of situation that can lead to a large quantum critical
regime.]
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APPENDIX A: PHENOMENOLOGICAL MODELS WITH
DISSIPATIVE HEAT BATHS

There is a considerable body of theoretical analysis that has
been carried out on models in which the quantum fluctuations
of local superconducting phases (defined, for instance, on the
superconducting nodes of a Josephson junction array) are
coupled locally to a phenomenological “heat bath.” These
models have somewhat similar structure to the problem
considered in Sec. III, but are simpler to the extent that the
heat bath and superconducting degrees of freedom are treated
separately. On the plus side, this means that aspects of the
solution of these models, some of which we summarize, can
be obtained with a greater level of certainty. On the negative
side, there is an unphysical aspect of all these models—which
we will hightlight as well—in that the presence of distinct heat
baths on each site of the system corresponds to the assumed
existence of an infinite number of degrees of freedom per unit
volume.

1. QSMT in the quantum RSJ model

The quantum fluctuations of a superconducting order
parameter in the presence of a dissipative heat bath is a
problem with a long history; it was the subject of intense study
as the focus of early work on “macroscopic quantum tunnel-
ing,” a precursor of the studies that led to the study of
superconducting Q bits [for a review, see Leggett et al.
(1987)]. In the context of the QSMT, this problem was
studied in the context of an array of resistively shunted
Josephson junctions (Chakravarty et al., 1986, 1988;
Fisher, 1986; Wagenblast et al., 1997; Kapitulnik et al.,
2001; Tewari, Toner, and Chakravarty, 2005; Stiansen,
Sperstad, and Sudbø, 2012). The same model was revisited
recently in the context of quantum criticality in a dissipative
XY model (Zhu, Chen, and Varma, 2015; Hou and Varma,
2016; Zhu, Hou, and Varma, 2016). This model is simple and
explicit and has a number of features that capture aspects of
the phenomena characteristic of the QSMT, as discussed by
Kapitulnik et al. (2001). We will summarize some aspects of
the solution here. However, it has some physical shortcomings
that we will also discuss.
The classical resistively shunted Josephson (RSJ) junction

model gives an extremely useful phenomenological descrip-
tion of a resistively shunted Josephson junction. Here there
are two contributions to the current across the junction, a
supercurrent Isc ¼ J sin½θ� and a normal current Inorm ¼ V=R,
where θ is the difference in phase across the junction, V is the
voltage across the junction, and J and R are, respectively, the
Josephson coupling and the resistance across the junction. To
obtain dynamical equations for the superconducting phase,
one invokes the Josephson relation V ¼ 2e_θ between the
voltage and the phase. It is also sometimes important to
account for the capacitance of the junction, according to
_Q ¼ C _V where _Q ¼ Isc þ Inorm is the time derivative of the
charge on the two sides of the junction (treated as the two
sides of a capacitor). Combining these considerations leads
to the classical equation of motion for the phase across the
junction,

Cθ̈ þ 2eJ sinðθÞ þ ð1=RÞ_θ ¼ 0: ðA1Þ

Given the success of this description of the collective
properties of Josephson junctions at nonzero T, it was natural
to ask about its properties thought of as an example of
dissipative quantum mechanics. In order to quantize this
problem, a representation of the “heat bath” must be intro-
duced. The key assertion (Caldeira and Leggett, 1981) is that
the details of the heat bath do not matter—what matters is that
it consists of a large number of degrees of freedom, each
weakly coupled to the “macroscopic quantum variable” θ, so
that the heat bath can be treated in linear response approxi-
mation. Then, since it is going to be treated in linear response
in any case, the heat bath can always be represented as a
collection of harmonic oscillators, with a spectral distribution
designed to yield the frictional term in Eq. (A1). One
particular representation that is useful is to couple _θ to a
1þ 1D acoustic boson—a representation that was introduced
originally to model the effect of coupling the Josephson
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junction to an open transmission line (Chakravarty and
Schmid, 1986; Zwerger, Dorsey, and Fisher, 1986). The
advantage of this representation is that it maps the problem
of the dissipative Josephson junction onto a boundary con-
formal field theory, for which many exact results exist.
Although the effective action obtained by integrating out

the gapless heat-bath degrees of freedom is nonlocal in time,
it is still of a simple enough form that it can be analyzed. The
result is an effective imaginary time action for a quantum
resistively shunted Josephson junction:

SRSJ½θ�¼
Z

dτ

� j_θj2
2EC

−Jcos½θ�
�
þ α

4π

Z
dτdτ0

				θðτÞ−θðτ0Þ
τ−τ0

				
2

;

ðA2Þ

where the “charging energy” EC ¼ 1=ð4e2CÞ, while α ∝ 1=R
is the single coupling that reflects the strength of the coupling
to the heat bath.
Equation (A2) describes a (0þ 1)-dimensional system. In

general, neither finite size quantum systems nor infinite 1D
classical (finite T) systems can exhibit phase transitions.
However, 1D classical systems with 1=r2 interactions are a
notable counterexample to this general expectation, which
carries over to the (0þ 1)-dimensional quantum system for
the special case in which interactions fall as 1=τ2 in imaginary
time. [A heat bath that produces such an interaction (which in
Fourier transform is linear in jωj) is also known as an “Ohmic
heat bath” (Caldeira and Leggett, 1981).] In the case of the
RSJ model at T ¼ 0, this system exhibits a phase transition
(Chakravarty, 1982; Schmid, 1983; Chakravarty and Rudnick,
1995) as a function of α from an ordered (“superconducting”)
phase for α > αc, in which h½θðτÞ − θð0Þ�2i is bounded as
τ → ∞, to a disordered (“metallic”) phase in which
h½θðτÞ − θð0Þ�2i → ∞ as τ → ∞. [αc is probably not univer-
sal, but αcðJ=EcÞ → 1 as J=Ec → 0.] As the names suggest, in
the superconducting phase the junction can support a dis-
sipationless supercurrent across the junction in the T → 0

limit. In contrast, in the metallic phase, the junction resistance
is finite; there are additive contributions to the conductivity
(parallel resistors) from the shunt resistor and the Cooper pair
tunneling (Halperin, Refael, and Demler, 2010).
Thus, the single quantum RSJ junction undergoes a non-

trivial QSMT, although in this case the superconducting phase
exists only at T ¼ 0. The same considerations have been
extended to higher dimensional arrays of resistively shunted
Josephson junctions (Chakravarty et al., 1986, 1988; Fisher,
1986; Wagenblast et al., 1997; Zhu, Chen, and Varma, 2015;
Hou and Varma, 2016; Zhu, Hou, and Varma, 2016).10

Perhaps the most interesting thing about this model is that

in the limit of small J=Ec, there is a QSMT that occurs as a
function of α; for α > αc, the ground state exhibits long-range
phase coherence even in the limit J=EC → 0, while for α < αc,
quantum fluctuations destroy long-range phase coherence. Any
phase with long-range phase coherence has a nonvanishing
helicity modulous (and hence is superconducting); manifestly,
because current can always be carried by normal electrons
through the shunt resistors, the phase without long-range phase
coherence is metallic, despite the fact that it is referred to as
“insulating” in much of the theoretical literature on the subject.
In fact, for small enough J=EC, the parallel contribution to the
conductivity can be computed perturbatively in powers of
J=EC, from which it can be seen that the T → 0 conductivity
diverges continuously as α → αc from below.
Clearly this model has many attractive features in the

present context: It has a QSMT. The metallic phase proximate
to the transition is anomalous in very similar ways to that
observed in experiment. Moreover, the model can be (and
has been) solved using well-controlled perturbative RG
methods and quantum Monte Carlo methods in various limits.
However, there are some very peculiar features of the model:
It has an effective dynamical exponent z → ∞. Indeed in the
metallic phase it has power-law correlations in time while
exhibiting exponential fall of correlations in space, something
known (Shtengel et al., 2005) as “sliding in time.” Along with
this, it has nonuniversal critical exponents, corresponding to a
line of fixed points rather than a usual fixed point.
Thus, while we view the solution of this model as extremely

illuminating, and extremely useful as a caricature of the
QSMT, we now focus on some of the unphysical features
that prevent it from being considered an entirely satisfactory
model. First, the heat bath that has been integrated out has, by
construction, an infinite number of degrees of freedom. When
thought of as a description of a macroscopic object, this is a
reasonable abstraction, but when we come to think of this
as representing a local mesoscopic degree of freedom in an
extended array of such junctions, this assumption must
ultimately break down. It is this feature of the model that
is responsible for the (0þ 1)-dimensional character of the
critical phenomena. This is a fundamental criticism of all
models which assume coupling to a local heat bath. Secondly,
in all microscopic derivations of which we know, super-
conducting fluctuations in a metallic environment couple to
the dissipative degrees of freedom through the sine of the
phase, as in Eqs. (12) and (B1), rather than through the phase
itself, as in Eq. (A2). This observation applies both in the
Josephson-junction context (Chakravarty, 1982; Eckern,
Schön, and Ambegaokar, 1984) and in the context of super-
conducting grains embedded in a metal (Feigel’man and
Larkin, 1998; Spivak, Oreto, and Kivelson, 2008). As far
as the dynamics of small amplitude phase fluctuations are
concerned, the two forms of the effective action are identical,
but for large amplitude fluctuations the effects are very
different, as shown in Appendix B.

APPENDIX B: JOSEPHSON JUNCTION ARRAYS AND
QUANTUM GRIFFITH PHASES

A microscopic derivation of the heat bath associated with
the normal electrons in a macroscopic Josephson junction was

10There are various ways to imagine generalizing the RSJ model to
an array. For instance, one can imagine the heat bath is coupled to the
phase difference θi − θj, across each junction, directly generalizing
the model of the single junction, or one could imagine a circumstance
in which each node of the array, i.e., each superconducting grain, is
capacitively coupled to a heat bath (Emery and Kivelson, 1995)
leading to a dissipative term that depends separately on the phase θj
of each grain separately.

Kapitulnik, Kivelson, and Spivak: Colloquium: Anomalous metals: Failed …

Rev. Mod. Phys., Vol. 91, No. 1, January–March 2019 011002-21



first obtained by Eckern, Schön, and Ambegaokar (1984).
This leads to an effective action of the same form as in
Eq. (12), where as previously mentioned the Ohmic heat bath
is coupled to eiθ. Again at the phenomenological level, it
seems reasonable to extend this model to Josephson junction
arrays (JJAs), leading to an effective action

SJJA ¼
X
j

Z
dτ

�j_θjj2
2Ej

−
X
i≠j

Jij
2
cosðθi − θjÞ

�

þ
X
j

αj
4π

Z
dτdτ0

				 e
iθjðτÞ − eiθjðτ0Þ

τ − τ0

				
2

; ðB1Þ

where θj is the superconducting phase on node j and the
various couplings are typically taken to be random variables
reflecting the degree of disorder. In most places where such a
model is considered, the Josephson coupling Jij is assumed to
be short ranged, although as discussed, for superconducting
grains embedded in a metal, this assumption is unphysical, at
least in the absence of a magnetic field. In defining the explicit
model, we have taken a heat bath coupled separately to the
phase on each grain, but similar considerations apply to
the model in which we associate a heat bath with each
junction ði; jÞ.
First, to illustrate the difference between the JJA and RSJ

models, we consider the solution of this model problem for
a single grain (i.e., Jij ¼ 0). Again, the action is that of a
(0þ 1D) system, but now one that is recognizable; if we think
of imaginary time as being a spatial dimension, this problem is
a version of the classical 1D 1=r2 XY ferromagnet at an
effective temperature T ∼ 1=α. 1D is the lower critical
dimension for this problem (or if we consider models with
interactions of the form 1=ra in 1D, then a ¼ 2 is the critical
range); while there is no phase transition in this model at
any finite T, the correlation length diverges exponentially at
low T. In other words, for the quantum model, the super-
conducting susceptibility and the corresponding correlation
time diverge as

τ0 ∼ χsc ∼ exp½Zπα� as α → ∞; ðB2Þ

where Z ≈ 1. On the one hand, this stands in contrast with the
RSJ model in which there is a true superconducting phase
(χsc ¼ ∞) for α > αc. On the other hand, for α large, the
exponentially large value of χsc reflects a similar suppression
of quantum fluctuations produced by the coupling to the
heat bath.
The existence of a susceptibility that depends exponentially

on a local parameter is an essential feature needed to obtain
a quantum Griffith phase. Indeed, it has been shown by Del
Maestro et al. (2008, 2010) and Vojta, Kotabage, and Hoyos
(2009) that such a model does indeed support a quantum
Griffith phase. Loosely, the line of argumentation goes as
follows: Consider the case in which Jij is short ranged and the
grains are far separated, so that globally the system is not
superconducting. However, there will be rare regions in which
there is a group of N grains that are strongly coupled by
unusually large Josephson couplings Jij ≫ Ei and Ej. In such
a cluster of grains, the phases are effectively locked leaving

only one low-energy phase variable, an average phase for the
cluster θ. This phase, is in turn, coupled to a dissipative heat
bath with an effective value of α ¼ P

jαj ∼ Nᾱ, where the
sum runs over grains in the cluster. This implies that the
superconducting susceptibility of the cluster grows exponen-
tially with the size of the cluster χsc ∼ exp½ZπᾱN�. Such a
cluster is rare for large N—under general circumstances the
probability of finding such a cluster is exponentially small in
proportion to N: PðNÞ ∼ exp½−γN�. So long as γ > Zπᾱ, such
rare grains are entirely negligible. However, when γ < Zπᾱ,
even though large clusters are rare, they make a divergent
contribution to the average superconducting susceptibility.
Since presumably γ → 0 as one approaches the point of a
superconducting transition, the susceptibility necessarily
diverges before this transition is reached—the defining feature
of a quantum Griffith phase.
Appealing as this result is, it ultimately depends on the

same unphysical feature of the heat bath already noted. [See
discussion in Spivak, Oreto, and Kivelson (2008) and Millis,
Morr, and Schmalian (2002) for further details.] For a large
superconducting cluster, there is a well-developed super-
conducting gap and correspondingly a well-defined super-
conducting coherence length ξ0. Gapless degrees of freedom
associated with the surrounding metallic state can only
penetrate at most a distance ξ0 into the cluster. Therefore,
in the end, the coupling to the heat bath can at most grow in
proportion to the perimeter (surface area in 3D) of the cluster.
In addition, as already mentioned, this model treats Jij as short
ranged, whereas in fact in a metal it falls with a slow power
law with distance. Thus, while it is an extremely attractive
possibility that quantum Griffith-like phenomena may occur
in real materials over an interesting intermediate range of
scales, we consider the sharp existence of such a phase to be
an artifact of the model.

APPENDIX C: CONCERNING “PURELY BOSONIC”
APPROACHES

While we feel that the absence of gapless quasiparticle
modes in purely bosonic models already disqualifies them
as descriptions of the experiments discussed above, in the
interest of completeness, we conclude this section with a
discussion of a few of these exotic proposals. In some
circumstances, which are usually associated with strong
correlation effects that can give rise to localized spins, even
the sign of the Josephson coupling is a random variable [see,
for example, Bulaevskii, Kuzii, and Sobyanin (1977) and
Kivelson and Spivak (1992)]. It was further noted in that
randomness in the signs of intergrain Josephson couplings can
bring the system into the universality class of a quantum XY
spin glass. Moreover, it was hypothesized by Phillips and
Dalidovich (2003) that such a quantum superconducting glass
has finite conductivity. However, given that the anomalous
metal regime has been observed in a broad range of systems,
some of which are quite pure and with no other signs of strong
correlations, it is difficult to believe that the random sign of the
Josephson couplings can be a generic property of systems
exhibiting anomalous metallic behavior. Not less important,
transport properties of quantum spin and superconducting
glasses are almost totally uncharted territory, theoretically.
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In particular, it remains to be established whether or not the
conductivity of the glass phase is finite.
It was proposed by Das and Doniach (1999) that the Bose-

Hubbard model can exhibit a “Bose metal” phase which is
formally related to a spin liquid with a spinon Fermi surface.
However, given that there is no intrinsic frustration in the
model (the ground state can be proven to be nodeless), and the
fact that subsequent studies have shown that spin liquids arise
only when any conventional ordering tendencies are strongly
suppressed (extremely frustrated) it is now clear this proposal
is not correct. In principle, extensions of this idea involving
uniformly frustrated versions of the same model can give rise
to spin liquids with a spinon Fermi surface (Sheng, Motrunich,
and Fisher, 2009; Yao, Zhang, and Kivelson, 2009; Barkeshli,
Yao, and Kivelson, 2013); however, in the absence of an
emergent gauge field, such a spinon Fermi surface is inher-
ently unstable (Barkeshli, Yao, and Kivelson, 2013).
A more sophisticated version of a Bose-metal proposal has

been mooted (Raghu, Torroba, and Wang, 2015; Mulligan,
2017) in the context of the magnetic field driven QSMT. (Here
the magnetic field implicitly introduces the requisite frus-
tration.) A related proposal, but one including gapless fer-
mions, was made by Galitski et al. (2005). In 2D there is a
precise correspondence (Zhang, Hansson, and Kivelson,
1989; Lopez and Fradkin, 1991; Halperin, Lee, and Read,
1993; Son, 2015; Mulligan and Raghu, 2016) between
charged bosons in a magnetic field, and charged fermions
in a shifted average magnetic field and coupled to an emergent
dynamical gauge field. It was argued by Mulligan and Raghu
(2016) and Mulligan (2017) that this mapping provides a
rationale for metallic behavior in the neighborhood of a
QSMT. This idea builds upon the earlier notions using similar
theoretical technology, which establish an analogy between a
field driven SIT and various quantum Hall plateau transitions
(Kivelson, Lee, and Zhang, 1992; Kapitulnik et al., 2001;
Breznay et al., 2016).
While these proposals are interesting in their own right,

there are several additional reservations we have about their
application to the QSMT: First, they do not offer any handle
on the observed similarities between the field driven QSMT
and the transition in the absence of a magnetic field. Secondly,
these theories treat the field-induced vortices as quantum
mechanical point particles; however, in the systems of interest
with large normal state conductances G, the vortices are
quasimacroscopic. Their quantum tunneling amplitude is
controlled by a parameter expð−GÞ ≪ 1, so that they behave
as essentially classical objects on all relevant energy and
temperature scales.
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