Shooting an X-ray Movie

Phys. Rev. Focus 8, 1
Ultrafast x-ray pulses allow researchers to watch a reaction unfold on a surface.
Figure caption
S. Backus/Univ. of Colorado
Quick flip. Oxygen molecules on a platinum surface change orientation when they receive an electron (see movie below). Researchers believe they can detect the flip as it happens using ultrashort pulses of x rays.

Atoms and molecules don’t waste a lot of time getting together, so to watch a chemical reaction you have to be fast. Really fast. An experiment appearing in the 9 July PRL uses some of the world’s shortest pulses of x-ray light to watch an oxygen molecule flip on a platinum surface. The result is the first super-slow-motion picture of a chemical reaction on a surface, and it should allow theorists to determine the precise mechanism of the reaction. Surface-based reactions are important in industry, and similar techniques may someday allow precise control over chemical reactions in everything from refining to pharmaceuticals.

Video courtesy of S. Backus, Univ. of Colorado, Boulder.
Schematic Movie of Oxygen Flip on Platinum Surface

Until recently, chemists have had a “before” and “after” picture of chemical reactions: Reactants come before; products come after. But the precise way in which reactants create products is still poorly understood because chemical reactions happen in a fraction of a picosecond (a trillionth of a second). Only in recent years, with the advent of ultrashort-pulsed lasers, have physicists and chemists observed chemical reactions as they unfold.

Now a team at the University of Colorado in Boulder and the University of Michigan in Ann Arbor reports for the first time watching a complete chemical reaction unfold on a surface. Initially, an oxygen molecule lies flat on a platinum surface, bound by a single electron. When an infrared laser pulse heats the platinum, a second electron jumps to the oxygen and causes the molecule to rotate horizontally.

The team was able to watch the flip using a series of 10-femtosecond x-ray pulses, which ejected electrons from a layer of oxygen molecules on the surface. A peak in the energy spectra of these electrons grew with time as the molecules rotated to their final state. The researchers believe the height of the peak corresponds to the precise position of the oxygen molecule during the transition.

But William Gadzuk of the National Institute of Standards and Technology in Gaithersburg, MD, remains unconvinced by the team’s results. “Their story [of flipping Oxygen] is consistent with the data, but the data are far from proving the story,” he says. Still, Gadzuk believes that the team’s two-pulse technique is “revolutionary.” Margaret Murnane of Colorado, one of the team leaders, agrees. “I think this will be the first experiment in an emerging field where soft x-rays will be used to probe reactions,” she says.

–Geoff Brumfiel

Subject Areas

Chemical Physics

Related Articles

Three Helium-Ammonia Compounds Found for Icy Planets
Condensed Matter Physics

Three Helium-Ammonia Compounds Found for Icy Planets

Stable compounds made from helium and ammonia are predicted to form at the extreme pressures found inside Neptune and Uranus. Read More »

Molecule’s Long-Lived Vibration in Superfluid Helium

Molecule’s Long-Lived Vibration in Superfluid Helium

Trapping a molecule inside a liquid helium nanodrop allows clean measurements of the molecule’s vibrations. Read More »

A Coordinated Approach to Chemical Reactivity
Materials Science

A Coordinated Approach to Chemical Reactivity

Using a scanning probe microscope, researchers measure the dependence of an atom’s chemical reactivity on the number of chemical bonds it forms. Read More »

More Articles