Synopsis

Potassium atoms feel a distant attraction

Physics 1, s11
The atoms in highly excited vibrational states of a diatomic molecule can be quite far apart near their maximum excursion. Physicists are now using laser spectroscopy to carefully measure the long-range effective interaction between potassium atoms in these states—an essential parameter to understanding ultracold atomic collisions.

To understand ultracold collisions between neutral atoms it is necessary to have accurate knowledge of the interatomic interaction potentials at extremely long range, out to many times the atomic radius. One approach is to study diatomic molecules in highly excited vibrational states, since there is a high probability of finding the atoms at fairly large distances from one another as they reach their maximum excursion. However, state-of-the-art techniques of laser spectroscopy must be used to excite and measure these states.

In the July 11th issue of Physical Review A, Stephen Falke and coworkers at the Leibniz Universität Hannover and Christian Lisdat at the Physikalisch-Technische Bundesanstalt have measured, with MHz precision, the energy gaps between several asymptotically high vibrational levels in the electronic ground state of the 39K2 molecule. By combining this data with earlier measurements, the authors can fit new ground-state potential functions and calculate accurate scattering lengths for each of the isotopic combinations of 39K, 40K, and 41K atoms. Their findings are sufficiently accurate that they can observe small deviations from the Born-Oppenheimer (adiabatic) approximation that is conventionally used to describe neutral atom collisions.

The exquisitely detailed experimental and analytical work illustrates the influence of advances in atomic and molecular physics that have been highlighted in several recent Nobel Prizes, including femtosecond frequency combs, iodine-stabilized lasers, and quantum degenerate gases. It will also contribute to continuing progress in molecular Bose-Einstein condensates and degenerate Fermi gases, which is opening new vistas in molecular and chemical physics. - Keith MacAdam


Subject Areas

Atomic and Molecular Physics

Related Articles

Seeing Collisions in Cold Molecular Clouds
Atomic and Molecular Physics

Seeing Collisions in Cold Molecular Clouds

Dense ensembles of laser-cooled molecules allow the observation of molecular collisions—a result that could lead to applications of cold molecular gases in quantum simulation and fundamental physics tests. Read More »

Probing Liquid Water’s Structure with Attosecond X-Ray Pulses
Condensed Matter Physics

Probing Liquid Water’s Structure with Attosecond X-Ray Pulses

Using an ultrafast technique, researchers shed light on how the hydrogen-bonded structure of water is reflected in its x-ray spectrum. Read More »

Precise Measurement of Hydrogen’s Energy Levels
Atomic and Molecular Physics

Precise Measurement of Hydrogen’s Energy Levels

Researchers have measured the transition energy of several highly excited states, which could help resolve a discrepancy about the size of the proton. Read More »

More Articles