Synopsis: Potassium atoms feel a distant attraction

The atoms in highly excited vibrational states of a diatomic molecule can be quite far apart near their maximum excursion. Physicists are now using laser spectroscopy to carefully measure the long-range effective interaction between potassium atoms in these states—an essential parameter to understanding ultracold atomic collisions.
Synopsis figure

To understand ultracold collisions between neutral atoms it is necessary to have accurate knowledge of the interatomic interaction potentials at extremely long range, out to many times the atomic radius. One approach is to study diatomic molecules in highly excited vibrational states, since there is a high probability of finding the atoms at fairly large distances from one another as they reach their maximum excursion. However, state-of-the-art techniques of laser spectroscopy must be used to excite and measure these states.

In the July 11th issue of Physical Review A, Stephen Falke and coworkers at the Leibniz Universität Hannover and Christian Lisdat at the Physikalisch-Technische Bundesanstalt have measured, with MHz precision, the energy gaps between several asymptotically high vibrational levels in the electronic ground state of the 39K2 molecule. By combining this data with earlier measurements, the authors can fit new ground-state potential functions and calculate accurate scattering lengths for each of the isotopic combinations of 39K, 40K, and 41K atoms. Their findings are sufficiently accurate that they can observe small deviations from the Born-Oppenheimer (adiabatic) approximation that is conventionally used to describe neutral atom collisions.

The exquisitely detailed experimental and analytical work illustrates the influence of advances in atomic and molecular physics that have been highlighted in several recent Nobel Prizes, including femtosecond frequency combs, iodine-stabilized lasers, and quantum degenerate gases. It will also contribute to continuing progress in molecular Bose-Einstein condensates and degenerate Fermi gases, which is opening new vistas in molecular and chemical physics. - Keith MacAdam


More Features »


More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Quantum Information

Quantum coherence in cold baths

Read More »

Next Synopsis

Related Articles

Focus: New View of Cold Atoms Flowing
Atomic and Molecular Physics

Focus: New View of Cold Atoms Flowing

A new technique produces an image of the flow of cold atoms through a channel, a potentially important tool for future cold-atom technology. Read More »

Viewpoint: Seeing Scrambled Spins
Atomic and Molecular Physics

Viewpoint: Seeing Scrambled Spins

Two experimental groups have taken a step towards observing the “scrambling” of information that occurs as a many-body quantum system thermalizes.   Read More »

Focus: Observing Diffusion Atom by Atom
Statistical Physics

Focus: Observing Diffusion Atom by Atom

The tracking of individual atoms diffusing in a cold, rarefied gas reveals the influence that a single impact has on randomizing the motion. Read More »

More Articles