Synopsis

The chill factor of squeezed light

Physics 2, s9
A laser beam in a squeezed state may be an effective source for cooling a macroscopic resonator.
Illustration: Alan Stonebraker

Cooling a macroscopic object to its mechanical ground state would enable many high-precision measurements that are currently limited by thermal noise, as well as open the possibility to observe a macroscopic quantum superposition of quantum states.

Analogous to the laser cooling of neutral atoms, radiation pressure can cool a mechanical resonator, such as a nanoscale beam. This has become an active area of research since the first experimental demonstrations in 2006, but so far, it has not been possible to cool a resonator completely to its ground state.

In a paper appearing in Physical Review A, Sumei Huang and Girish Agarwal of Oklahoma State University propose that using a “squeezed” beam of light instead of a classical field can enhance the effectiveness of cooling a resonator with radiation pressure. In a squeezed beam, one component of the radiation field has reduced noise at the expense of enhanced noise in the other component. Huang and Agarwal show that by coupling a parametric oscillator (a source of squeezed light) to a mechanical resonator, it should be possible to reduce the temperature of the resonator by a factor up to 20 compared with using a classical field.

If this method can be experimentally demonstrated and verified, it may lead to ground-state cooling of optomechanical resonators and have applications in high-precision metrology, such as gravitational wave detection. – Frank Narducci


Subject Areas

Optics

Related Articles

Stiffening a Spring Made of Light
Optics

Stiffening a Spring Made of Light

Adding a nonlinear crystal to an optical spring can change the spring’s stiffness, a finding that could allow the use of such devices as gravitational-wave detectors. Read More »

Shielding Quantum Light in Space and Time
Quantum Physics

Shielding Quantum Light in Space and Time

A way to create single photons whose spatiotemporal shapes do not expand during propagation could limit information loss in future photonic quantum technologies. Read More »

A New Source for Quantum Light
Quantum Physics

A New Source for Quantum Light

A new device consisting of a semiconductor ring produces pairs of entangled photons that could be used in a photonic quantum processor. Read More »

More Articles