Synopsis: The chill factor of squeezed light

A laser beam in a squeezed state may be an effective source for cooling a macroscopic resonator.
Synopsis figure
Illustration: Alan Stonebraker

Cooling a macroscopic object to its mechanical ground state would enable many high-precision measurements that are currently limited by thermal noise, as well as open the possibility to observe a macroscopic quantum superposition of quantum states.

Analogous to the laser cooling of neutral atoms, radiation pressure can cool a mechanical resonator, such as a nanoscale beam. This has become an active area of research since the first experimental demonstrations in 2006, but so far, it has not been possible to cool a resonator completely to its ground state.

In a paper appearing in Physical Review A, Sumei Huang and Girish Agarwal of Oklahoma State University propose that using a “squeezed” beam of light instead of a classical field can enhance the effectiveness of cooling a resonator with radiation pressure. In a squeezed beam, one component of the radiation field has reduced noise at the expense of enhanced noise in the other component. Huang and Agarwal show that by coupling a parametric oscillator (a source of squeezed light) to a mechanical resonator, it should be possible to reduce the temperature of the resonator by a factor up to 20 compared with using a classical field.

If this method can be experimentally demonstrated and verified, it may lead to ground-state cooling of optomechanical resonators and have applications in high-precision metrology, such as gravitational wave detection. – Frank Narducci


Features

More Features »

Announcements

More Announcements »

Subject Areas

Optics

Previous Synopsis

Next Synopsis

Superconductivity

Superconductivity can be sensitive

Read More »

Related Articles

Focus: <i>Image</i>—Cooperating Lasers Make Topological Defects
Nonlinear Dynamics

Focus: Image—Cooperating Lasers Make Topological Defects

A circle of interacting lasers is a new model system for exploring topological defects, disordered structures that show up in a wide variety of seemingly unrelated systems. Read More »

Viewpoint: Inducing Transparency with a Magnetic Field
Optics

Viewpoint: Inducing Transparency with a Magnetic Field

A magnetic field applied to an atomic sample in an optical cavity generates optical transparency that could be used to enhance the frequency stability of lasers. Read More »

Focus: <i>Image</i>—Honeycomb Diffraction
Photonics

Focus: Image—Honeycomb Diffraction

Predictions of diffraction patterns for honeycomb photonic crystals were part of a comprehensive study of these structures that may be useful in nanoscale photonic devices. Read More »

More Articles