Synopsis: An ultracold graphene analog

The properties of graphene might be studied from another angle by putting ultracold atoms into a hexagonal optical lattice.
Synopsis figure
Illustration: K. L. Lee et al., Phys. Rev. A. (2009)

Two highly active fields of physics have merged in recent years, as researchers work to build models of condensed matter systems using ultracold atoms suspended in optical lattices. Graphene provides an environment for many intriguing physics problems, with its massless fermions, unusually high carrier mobility, and anomalous quantum Hall behavior. Now, Kean Loon Lee and colleagues at the National University of Singapore, and at Ecole Normale Supérieure and Institut Non Linéaire de Nice in France, report in Physical Review A their theoretical studies of ultracold atoms arranged in a hexagonal graphenelike optical lattice.

When atoms are loaded into optical traps researchers can control their position and the strength of their interactions. The authors model a two-dimensional honeycomb lattice of traps created by the interference of three laser beams. They then carry out tight-binding calculations of the band structure to show that a signature of graphene—transport of massless excitations—could indeed exist in this analogous system. Lee et al. also study the hopping of nearest-neighbor atoms and the influence of lattice distortions, providing a useful guidepost to future experimental efforts. – David Voss


Features

More Features »

Announcements

More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Next Synopsis

Optics

Attoseconds for all

Read More »

Related Articles

Viewpoint: A Diatomic Molecule is One Atom too Few
Atomic and Molecular Physics

Viewpoint: A Diatomic Molecule is One Atom too Few

The successful laser cooling of a triatomic molecule paves the way towards the study of ultracold polyatomic molecules. Read More »

Viewpoint: Atom Interferometers Warm Up
Atomic and Molecular Physics

Viewpoint: Atom Interferometers Warm Up

Researchers have demonstrated an atom interferometer based on a warm vapor, rather than on a cold atomic gas. Read More »

Viewpoint: Electron Pulses Made Faster Than Atomic Motions
Atomic and Molecular Physics

Viewpoint: Electron Pulses Made Faster Than Atomic Motions

Electron pulses have shattered the 10-femtosecond barrier at which essentially all atomic motion is frozen in materials. Read More »

More Articles