Synopsis: An ultracold graphene analog

The properties of graphene might be studied from another angle by putting ultracold atoms into a hexagonal optical lattice.
Synopsis figure
Illustration: K. L. Lee et al., Phys. Rev. A. (2009)

Two highly active fields of physics have merged in recent years, as researchers work to build models of condensed matter systems using ultracold atoms suspended in optical lattices. Graphene provides an environment for many intriguing physics problems, with its massless fermions, unusually high carrier mobility, and anomalous quantum Hall behavior. Now, Kean Loon Lee and colleagues at the National University of Singapore, and at Ecole Normale Supérieure and Institut Non Linéaire de Nice in France, report in Physical Review A their theoretical studies of ultracold atoms arranged in a hexagonal graphenelike optical lattice.

When atoms are loaded into optical traps researchers can control their position and the strength of their interactions. The authors model a two-dimensional honeycomb lattice of traps created by the interference of three laser beams. They then carry out tight-binding calculations of the band structure to show that a signature of graphene—transport of massless excitations—could indeed exist in this analogous system. Lee et al. also study the hopping of nearest-neighbor atoms and the influence of lattice distortions, providing a useful guidepost to future experimental efforts. – David Voss


More Features »


More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Next Synopsis


Attoseconds for all

Read More »

Related Articles

Synopsis: Direct View of Exchange Symmetry
Quantum Physics

Synopsis: Direct View of Exchange Symmetry

A proposed set of experiments could offer a direct measurement of the fundamental quantum property that distinguishes fermions from bosons. Read More »

Synopsis: Topological Defect on the Move
Condensed Matter Physics

Synopsis: Topological Defect on the Move

Researchers have directed the motion of a domain-wall-like topological defect through a crystal of trapped ions. Read More »

Viewpoint: Trapped Ions Test Fundamental Particle Physics
Atomic and Molecular Physics

Viewpoint: Trapped Ions Test Fundamental Particle Physics

New precision experiments using trapped molecular ions provide an alternative method for determining if the electron has an electric dipole moment. Read More »

More Articles