Synopsis: Atoms down the tube

Dense clouds of cold atoms have been produced in thin optical fibers.
Synopsis figure
Credit: M. Bajcsy et al., Phys. Rev. A (2011)

The scattering cross section for single photons resonantly interacting with an atom scales with the square of the photon wavelength, which, for resonances near the infrared, exceeds the geometrical size of an atom by eight orders of magnitude. Applications based on interactions between single photons and atoms, such as quantum information processing, can take full advantage of this large resonant cross section only if both light and the atoms are tightly confined.

A team of researchers at the Harvard-MIT Center for Ultracold Atoms has now greatly improved a new and promising technique for achieving this goal. Writing in Physical Review A, Michal Bajcsy and co-workers report on the simultaneous confinement of laser-cooled atoms and light in hollow-core photonic crystal fibers. These fibers, which are already used for nonlinear optical applications, confine the guided light to an empty central region through a photonic-band gap effect. Several years ago the authors already succeeded in trapping a few thousand rubidium atoms in the core of such a fiber and used this system to implement an all-optical switch controlled with less than a thousand photons. They have now increased the number of loaded atoms to 30,000, thus creating a system with great potential for control of light-matter interactions. With this new advance, combining cold atom and crystal fiber technology appears an attractive route toward creating effective atom-mediated interactions between single photons. – Mark Saffman


Features

More Features »

Announcements

More Announcements »

Subject Areas

Atomic and Molecular PhysicsOptics

Previous Synopsis

Superconductivity

Nodes or no nodes

Read More »

Next Synopsis

Superconductivity

Odd topological superconductor

Read More »

Related Articles

Viewpoint: 3D Imaging of Dislocations
Industrial Physics

Viewpoint: 3D Imaging of Dislocations

A combination of imaging techniques provides an unprecedented 3D view of a network of crystal defects known as dislocations. Read More »

Viewpoint: Scattering Atoms Catch the <i>d </i>Wave
Condensed Matter Physics

Viewpoint: Scattering Atoms Catch the d Wave

d-wave interactions like those thought to underlie unconventional superconductivity have been implemented in a cold-atom gas. Read More »

Synopsis: Photons Couple Like Cooper Pairs
Optics

Synopsis: Photons Couple Like Cooper Pairs

A pairing of photons—similar to the pairing of electrons in superconductors—can occur when light scatters in a transparent medium.   Read More »

More Articles