Synopsis: A new phase for molecular superfluidity

Theoretical analysis shows how exotic superfluidity might be observed in ultracold molecules.
Synopsis figure
Credit: J. Levinsen et al., Phys. Rev. A (2011)

Mastering control of ultracold atoms and molecules has allowed researchers the hope of studying a variety of exotic quantum phases. One example is the search for different kinds of superfluid behavior in ultracold diatomic molecular gases. However, simple cooling, as with liquid helium or superconducting materials, won’t do. For example, alkali molecules such as KRb tend to undergo chemical rearrangements into K2 and Rb2 at the desired experimental densities. A way around this is to establish interactions between atoms restricted to two dimensions, which simultaneously block chemical reactions and allow a topological form of superfluid pairing at high density. In a thorough theoretical analysis published in Physical Review A, Jesper Levinsen at the University of Cambridge, UK, and colleagues show how this might be accomplished.

Levinsen et al. consider a pairing interaction with the ungainly name “px+ipy” that is known from studies of the fractional quantum Hall effect, among others. By applying a microwave field, the interaction potential between two molecules can be tailored to be attractive at long range and repulsive at short range (which avoids the chemical difficulties). This sets up conditions to establish the px+ipy superfluid phase, which refers to how the energy gap of the condensate varies on the Fermi surface (e.g., s wave is isotropic). This phase is expected to support Majorana modes which, if experimentally tractable, could form the basis of new kinds of quantum information processing in which qubits are topologically insulated from environmental disturbances. – David Voss


More Features »


More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Quantum Physics

In two places at once

Read More »

Related Articles

Synopsis: Beam Splitter is Printed On-Demand
Industrial Physics

Synopsis: Beam Splitter is Printed On-Demand

3D printing enables researchers to quickly fabricate a complex part for a molecular beam experiment. Read More »

Viewpoint: A Diatomic Molecule is One Atom too Few
Atomic and Molecular Physics

Viewpoint: A Diatomic Molecule is One Atom too Few

The successful laser cooling of a triatomic molecule paves the way towards the study of ultracold polyatomic molecules. Read More »

Viewpoint: Atom Interferometers Warm Up
Atomic and Molecular Physics

Viewpoint: Atom Interferometers Warm Up

Researchers have demonstrated an atom interferometer based on a warm vapor, rather than on a cold atomic gas. Read More »

More Articles