Synopsis: Quantum magnetism with polar molecules

Researchers propose using ultracold polar molecules to simulate the t-J model, the cornerstone of many theoretical efforts to understand high-temperature superconductivity.
Synopsis figure
Adapted from A. V. Gorshkov et al., Phys. Rev. A (2011)

The so-called t-J model describes strongly correlated fermions on a lattice, and in particular, the system’s most interesting low-energy spin and charge excitations. In the context of high-temperature superconductivity, the model has been instrumental in the attempt to describe the evolution of the insulating state of the undoped parent into the superconducting state of the doped material. Although trivial to write down on a piece of paper, the model contains complex physics and is intractable; many approximations and numerical schemes have been devised for its study.

Now, in two papers appearing in Physical Review Letters and Physical Review A, Alexey Gorshkov at the California Institute of Technology, Pasadena, and collaborators propose using suitable rotational states of ultracold polar molecules in an optical lattice in order to simulate a highly tunable generalization of the t-J model in the lab. The researchers’ proposal is based on currently available experimental techniques. They also show that detailed control—both in sign and magnitude—of all the interaction parameters is possible. As a first step they have used a numerical approach to construct the phase diagram of the simplest experimentally realizable case. Apart from stimulating interesting experimental studies, their proposal has the potential to facilitate the study of complex condensed-matter phenomena in tightly controlled experimental settings. – Alex Klironomos


Features

More Features »

Announcements

More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Magnetism

Magnetized plumbing

Read More »

Next Synopsis

Related Articles

Synopsis: Fermions Trapped in Boson Gas
Atomic and Molecular Physics

Synopsis: Fermions Trapped in Boson Gas

A Bose-Einstein condensate can act as a stable trap for a gas of fermions. Read More »

Synopsis: Atom Interferometers at Full Tilt
Atomic and Molecular Physics

Synopsis: Atom Interferometers at Full Tilt

An atom interferometer serves as a sensitive tiltmeter that can measure Earth’s tidal deformations. Read More »

Viewpoint: Scattering Atoms Catch the <i>d </i>Wave
Condensed Matter Physics

Viewpoint: Scattering Atoms Catch the d Wave

d-wave interactions like those thought to underlie unconventional superconductivity have been implemented in a cold-atom gas. Read More »

More Articles