Synopsis: Quantum magnetism with polar molecules

Researchers propose using ultracold polar molecules to simulate the t-J model, the cornerstone of many theoretical efforts to understand high-temperature superconductivity.
Synopsis figure
Adapted from A. V. Gorshkov et al., Phys. Rev. A (2011)

The so-called t-J model describes strongly correlated fermions on a lattice, and in particular, the system’s most interesting low-energy spin and charge excitations. In the context of high-temperature superconductivity, the model has been instrumental in the attempt to describe the evolution of the insulating state of the undoped parent into the superconducting state of the doped material. Although trivial to write down on a piece of paper, the model contains complex physics and is intractable; many approximations and numerical schemes have been devised for its study.

Now, in two papers appearing in Physical Review Letters and Physical Review A, Alexey Gorshkov at the California Institute of Technology, Pasadena, and collaborators propose using suitable rotational states of ultracold polar molecules in an optical lattice in order to simulate a highly tunable generalization of the t-J model in the lab. The researchers’ proposal is based on currently available experimental techniques. They also show that detailed control—both in sign and magnitude—of all the interaction parameters is possible. As a first step they have used a numerical approach to construct the phase diagram of the simplest experimentally realizable case. Apart from stimulating interesting experimental studies, their proposal has the potential to facilitate the study of complex condensed-matter phenomena in tightly controlled experimental settings. – Alex Klironomos


Features

More Features »

Announcements

More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Magnetism

Magnetized plumbing

Read More »

Next Synopsis

Related Articles

Synopsis: An Expanding Universe in the Lab
Atomic and Molecular Physics

Synopsis: An Expanding Universe in the Lab

The rapid expansion of a Bose-Einstein condensate can mimic the expansion of the Universe. Read More »

Synopsis: ARPES with Cold Atoms
Atomic and Molecular Physics

Synopsis: ARPES with Cold Atoms

A numerical study outlines how to perform measurements on cold atoms that mimic angle-resolved photoemission spectroscopy studies of solids. Read More »

Viewpoint: A Boost in Precision for Optical Atomic Clocks
Atomic and Molecular Physics

Viewpoint: A Boost in Precision for Optical Atomic Clocks

Researchers set a new record in atomic clock precision by using spectroscopic imaging to reduce frequency variations in a strontium optical lattice clock. Read More »

More Articles