Synopsis: Superposed in a Crystal

Spin-dependent forces create quantum superpositions of different structures of a trapped ion crystal.
Synopsis figure
J. D. Baltrusch et al., Phys. Rev. A (2011)

In quantum mechanics, a system with distinct eigenstates can exist in a superposition of two or more states with specific probability amplitudes. The creation and manipulation of these superpositions is central to quantum computing. Efforts to experimentally realize quantum superpositions of macroscopic objects that are larger than an electron or a photon have generally focused on controlling their quantum dynamics and their interaction with the environment. Strings of trapped ions, an interesting example of many-body objects that can behave quantum mechanically, have attracted attention due to their remarkable contribution to quantum technologies, such as their use in the realization of quantum simulators and quantum teleportation protocols.

In an article in Physical Review A, Jens Baltrusch at Saarland University, Germany, and his colleagues report theoretical work on the dynamics of two different structures—linear and zigzag—of a trapped ion crystal. Starting out with a chain of ions at rest in a regime close to its structural phase transition, they excite—with spin-dependent trapping—a particular ion of the crystal into a superposition of metastable electronic states. Coulomb forces then modify the motions of the other ions in relation to the state of the chosen one, producing a state in which all the ions are entangled. This state is manifested as a superposition of different crystalline structures—a so-called cat state—and, according to the authors, should be observable with interferometry. – Jihane Mimih


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum InformationMesoscopicsQuantum Physics

Previous Synopsis

Next Synopsis

Superconductivity

Pnictide Gap Symmetry

Read More »

Related Articles

Viewpoint: Linking Two Quantum Dots with Single Photons
Photonics

Viewpoint: Linking Two Quantum Dots with Single Photons

Researchers have transferred quantum information from one quantum dot to another dot 5 m away using photonic qubits as the relay. Read More »

Synopsis: Speeding Up Battery Charging with Quantum Physics
Quantum Physics

Synopsis: Speeding Up Battery Charging with Quantum Physics

Calculations show that charging a set of batteries can go faster if the batteries are coupled together quantum mechanically. Read More »

Viewpoint: Photonic Hat Trick
Optics

Viewpoint: Photonic Hat Trick

Two independent groups have provided the first experimental demonstration of genuine three-photon interference. Read More »

More Articles