Synopsis: Superposed in a Crystal

Spin-dependent forces create quantum superpositions of different structures of a trapped ion crystal.
Synopsis figure
J. D. Baltrusch et al., Phys. Rev. A (2011)

In quantum mechanics, a system with distinct eigenstates can exist in a superposition of two or more states with specific probability amplitudes. The creation and manipulation of these superpositions is central to quantum computing. Efforts to experimentally realize quantum superpositions of macroscopic objects that are larger than an electron or a photon have generally focused on controlling their quantum dynamics and their interaction with the environment. Strings of trapped ions, an interesting example of many-body objects that can behave quantum mechanically, have attracted attention due to their remarkable contribution to quantum technologies, such as their use in the realization of quantum simulators and quantum teleportation protocols.

In an article in Physical Review A, Jens Baltrusch at Saarland University, Germany, and his colleagues report theoretical work on the dynamics of two different structures—linear and zigzag—of a trapped ion crystal. Starting out with a chain of ions at rest in a regime close to its structural phase transition, they excite—with spin-dependent trapping—a particular ion of the crystal into a superposition of metastable electronic states. Coulomb forces then modify the motions of the other ions in relation to the state of the chosen one, producing a state in which all the ions are entangled. This state is manifested as a superposition of different crystalline structures—a so-called cat state—and, according to the authors, should be observable with interferometry. – Jihane Mimih


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum InformationMesoscopicsQuantum Physics

Previous Synopsis

Next Synopsis

Superconductivity

Pnictide Gap Symmetry

Read More »

Related Articles

Viewpoint: Equilibration in Quantum Systems
Quantum Physics

Viewpoint: Equilibration in Quantum Systems

Two research groups show that specific contributions to entropy may be the key to understanding how and when quantum systems equilibrate. Read More »

Focus: Filtering Atoms by Their Spin
Quantum Physics

Focus: Filtering Atoms by Their Spin

A spin filter for cold atoms might be used as a testbed for spintronic devices and for searches for Majorana fermions.   Read More »

Synopsis: Squeezing an Electron Crystal
Condensed Matter Physics

Synopsis: Squeezing an Electron Crystal

Researchers have determined the energy required to add an electron to a Wigner crystal—an ordered crystalline state made of electrons rather than atoms. Read More »

More Articles