Synopsis: Mapping the Topology of a Cold World

A protocol is proposed to map the local Berry curvature over the Brillouin zone of cold atoms in an optical lattice.
Synopsis figure
H. M. Price and N. R. Cooper, Phys. Rev. A (2012)

The properties of particles in periodic potentials are determined not only by the energy-band structure but also by the topology of the eigenstates in the bands. Following a closed trajectory in momentum space within the Brillouin zone, a particle may acquire a Berry phase that is the integral of the Berry curvature over the surface bounded by the contour. The periodicity of the lattice requires that the integral over the entire Brillouin zone is quantized, which implies the existence of topological invariants underlying the behavior of the system.

In a paper appearing in Physical Review A, Hannah Price and Nigel Cooper at the University of Cambridge, UK, propose a new protocol for mapping the local Berry curvature in ultracold gas experiments. The idea consists of adiabatically moving an atomic wave packet in a two-dimensional lattice subjected to an external force. Even though the trajectory in real-space is very complicated, the path in momentum space can be traced and, most importantly, the force can be cleverly managed in such a way to measure the effect of the Berry curvature at each point in the Brillouin zone.

Price and Cooper show how their protocol is expected to work in the case of an asymmetric hexagonal lattice and in the so-called “optical flux lattices,” where the atoms feel an artificial magnetic field with high flux density. They also provide concrete arguments about the feasibility of experiments with the state-of-the-art techniques. A successful program in this direction could eventually open new perspectives in the study of quantum Hall physics in ultracold gases and, more generally, of topological effects in the dynamics of matter waves. – Franco Dalfovo


Features

More Features »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Statistical Physics

Light Takes a Flight Back

Read More »

Next Synopsis

Related Articles

Synopsis: Entangling Atoms by Sculpting their Wave Functions
Quantum Physics

Synopsis: Entangling Atoms by Sculpting their Wave Functions

Two atoms in a cavity are entangled by carving off unwanted parts of the wave functions that describe them. Read More »

Synopsis: A Dark Side for Qubits
Quantum Information

Synopsis: A Dark Side for Qubits

Dark solitons in a Bose-Einstein condensate could, according to calculations, function as qubits with long lifetimes. Read More »

Viewpoint: Measuring the Tidal Force on a Particle’s Matter Wave
Gravitation

Viewpoint: Measuring the Tidal Force on a Particle’s Matter Wave

The effect of the tidal force, which is directly related to the curvature of spacetime, on an individual particle’s wave function has been measured with an atom interferometer. Read More »

More Articles