Synopsis

Scaling Up Quantum Computers for Chemistry

Physics 7, s93
Quantum computers will need a gargantuan increase in the number of gates to push the current boundaries in chemistry calculations.

Quantum computers hold the promise of simulating complex molecules that are beyond the capabilities of classical computers. To understand how close they are to fulfilling this potential, researchers have now investigated the system requirements of a quantum computer that could outperform classical computers in calculating molecular properties. Their findings, reported in Physical Review A, show that a quantum computer using current algorithm techniques would need an astounding 1018 quantum gates to simulate a simple biochemical compound.

A quantum computer stores information in quantum bits (qubits) that allow it to potentially perform certain tasks in much less time than it would take a normal computer. The canonical example is factoring large numbers, but to actually surpass classical factoring methods, a quantum computer would need several thousands of qubits, which is beyond the 14 qubits that researchers have so far been able to connect.

Quantum computers may prove their worth sooner in other fields, like quantum chemistry. Simulating a water molecule, for example, would require only 14 qubits (by contrast, a classical computer simulation of water needs 214 bits). However, quantum operations on the qubits rely on logic gates, which so far have been limited to a few hundred per device. Dave Wecker of Microsoft Research in Redmond, Washington, and his colleagues tabulated the number of gates needed to simulate a molecule of a certain size. For water, they found you would need several billion gates to calculate the electronic ground state using a standard algorithm. The gate count goes up by a factor of a billion for slightly larger molecules that are currently intractable with classical methods. Judging this unfeasible, the researchers conclude that quantum software engineers need to continue their efforts at devising new algorithms that reduce the number of gates. – Michael Schirber


Subject Areas

Quantum InformationChemical Physics

Related Articles

Enhanced Interactions Using Quantum Squeezing
Quantum Information

Enhanced Interactions Using Quantum Squeezing

A quantum squeezing method can enhance interactions between quantum systems, even in the absence of precise knowledge of the system parameters. Read More »

How to Speed up a Quantum Network
Quantum Information

How to Speed up a Quantum Network

Sending photons to a remote site in groups should allow quantum links to be more rapidly established across future quantum networks than if photons are sent one at a time. Read More »

Erasure Qubits for Abridged Error Correction
Quantum Information

Erasure Qubits for Abridged Error Correction

Researchers have realized a recently proposed qubit in which the errors mostly involve erasure of the qubit state, an advance that could help simplify the architecture of fault-tolerant quantum computers. Read More »

More Articles