Synopsis: When Quantum Light Meets Matter

A theoretical analysis of the interaction between quantum light and matter shows that quantum light can offer advantages over its classical analog.
Synopsis figure
J. C. López Carreño et al., Phys. Rev. A (2016)

Interactions between classical light and matter lie at the heart of a broad range of applications—think sunlight striking a solar panel or laser light scanning a barcode. But what happens when quantum light such as light made of “squeezed” or entangled photons interacts with matter? In two back-to-back papers, Fabrice Laussy from the Autonomous University of Madrid, Spain, and colleagues now report a theoretical analysis of the interaction between quantum light and matter that, unlike most previous studies, doesn’t solely apply to specific types of quantum light. The researchers find that quantum light offers advantages over its classical counterpart for certain systems and applications.

Focusing on two ubiquitous systems, an optical cavity and a two-level quantum system, the authors first determined the quantum states each system can be in. They then calculated which of these states could be reached by exciting the systems with classical light or quantum light in the form of a train of single photons. They found that quantum light can take a cavity into states that are not reached with classical light—for example, states that have smaller quantum fluctuations and could be used to store and process quantum information robustly. By contrast, quantum light cannot bring a two-level system into states inaccessible through classical-light excitation. However, they demonstrated that the photons emitted by the two-level system upon quantum excitation are more antibunched (more regularly spaced in time) than those generated by classical excitation. Armed with this knowledge, the researchers propose using chains of two-level systems, in which photon emission from one system drives the quantum excitation of the next, as a way to make better single-photon sources.

This research is published in Physical Review A.

–Ana Lopes

Ana Lopes is a Senior Editor of Physics.


Features

More Features »

Subject Areas

Quantum PhysicsPhotonics

Previous Synopsis

Biological Physics

Flocks Without Memory

Read More »

Next Synopsis

Condensed Matter Physics

Simple Model for Linear Magnetoresistance  

Read More »

Related Articles

Focus: Emitting Photons Is One Way to Be Cool
Photonics

Focus: Emitting Photons Is One Way to Be Cool

A device described in a new proposal would cool an object by causing it to radiate extra heat. Read More »

Synopsis: Hybridized Photons Feel Electric Fields
Optoelectronics

Synopsis: Hybridized Photons Feel Electric Fields

Combining photons with electronic excitations creates a new kind of quasiparticle that can be manipulated with electric or magnetic fields. Read More »

Synopsis: Excited by Shaped Electrons
Nanophysics

Synopsis: Excited by Shaped Electrons

Electrons with a modulated wave function might enable improvements in electron microscopy and quantum computing. Read More »

More Articles