Synopsis: Chaos from a Chilled Cloud of Atoms

A map of chaos emerging in a Bose-Einstein condensate provides a rare glimpse of the behavior in a system of many quantum particles.  
Synopsis figure
J. Tomkovič et al., Phys. Rev. A (2017)

A butterfly beats its wings in one part of the world and stirs up a hurricane in another part. That’s the proverbial way of explaining chaotic behavior, which has been observed in a plethora of classical dynamical systems but only in a few quantum systems and in fewer still quantum systems comprising many particles. Markus Oberthaler from the University of Heidelberg, Germany, and colleagues have now mapped, with exquisite detail, the onset of chaos in a many-particle quantum system driven by a periodic perturbation. Their mapping approach could help researchers get to grips with how chaos emerges in, and affects, many-body quantum systems.

Oberthaler and co-workers began their study by preparing a Bose-Einstein condensate of cold atoms that had two components with different internal spins and then coupling the components with a microwave pulse. The coupling was such that the condensate formed the many-particle quantum equivalent of the anharmonic oscillator, a classical oscillator that can display chaotic behavior if driven by a periodic perturbation of specific frequency and phase. The researchers then drove the system by periodically varying the amplitude of the pulse and thus the strength of the coupling. Next they mapped the phase space spanned by the relative quantum phase of the two components and the relative number of atoms in them using an approach that involved a magnetic field, another microwave pulse, and absorption imaging. And they did the mapping for a range of driving amplitudes. They found a small region of chaotic trajectories in the phase space at a moderate driving amplitude and a large chaotic region at larger amplitude—just like those that characterize the phase space of the anharmonic oscillator undergoing chaotic dynamics.

This research is published in Physical Review A.

–Ana Lopes

Ana Lopes is a Senior Editor of Physics.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Nonlinear DynamicsQuantum Physics

Previous Synopsis

Materials Science

Golden Mystery Solved

Read More »

Next Synopsis

Energy Research

Gusts in the Wind

Read More »

Related Articles

Synopsis: Random Bit Stream from Cosmic Light
Quantum Physics

Synopsis: Random Bit Stream from Cosmic Light

To help test quantum physics, a new method generates random numbers using light from distant stars and quasars that presumably have no correlation with experiments on Earth. Read More »

Viewpoint: Brain Motion Under Impact
Nonlinear Dynamics

Viewpoint: Brain Motion Under Impact

A numerical study suggests that head impacts primarily induce a few low-frequency, damped modes of vibration in brain tissue, a finding that could inform the design of sports helmets. Read More »

Viewpoint: Moiré Effect Could Enhance Neutron Interferometry
Gravitation

Viewpoint: Moiré Effect Could Enhance Neutron Interferometry

A new and more flexible neutron interferometer design relies on the moiré effect, in which two periodic patterns are combined to give a longer-period pattern. Read More »

More Articles