Synopsis: Chaos from a Chilled Cloud of Atoms

A map of chaos emerging in a Bose-Einstein condensate provides a rare glimpse of the behavior in a system of many quantum particles.  
Synopsis figure
J. Tomkovič et al., Phys. Rev. A (2017)

A butterfly beats its wings in one part of the world and stirs up a hurricane in another part. That’s the proverbial way of explaining chaotic behavior, which has been observed in a plethora of classical dynamical systems but only in a few quantum systems and in fewer still quantum systems comprising many particles. Markus Oberthaler from the University of Heidelberg, Germany, and colleagues have now mapped, with exquisite detail, the onset of chaos in a many-particle quantum system driven by a periodic perturbation. Their mapping approach could help researchers get to grips with how chaos emerges in, and affects, many-body quantum systems.

Oberthaler and co-workers began their study by preparing a Bose-Einstein condensate of cold atoms that had two components with different internal spins and then coupling the components with a microwave pulse. The coupling was such that the condensate formed the many-particle quantum equivalent of the anharmonic oscillator, a classical oscillator that can display chaotic behavior if driven by a periodic perturbation of specific frequency and phase. The researchers then drove the system by periodically varying the amplitude of the pulse and thus the strength of the coupling. Next they mapped the phase space spanned by the relative quantum phase of the two components and the relative number of atoms in them using an approach that involved a magnetic field, another microwave pulse, and absorption imaging. And they did the mapping for a range of driving amplitudes. They found a small region of chaotic trajectories in the phase space at a moderate driving amplitude and a large chaotic region at larger amplitude—just like those that characterize the phase space of the anharmonic oscillator undergoing chaotic dynamics.

This research is published in Physical Review A.

–Ana Lopes

Ana Lopes is a Senior Editor of Physics.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Nonlinear DynamicsQuantum Physics

Previous Synopsis

Materials Science

Golden Mystery Solved

Read More »

Next Synopsis

Energy Research

Gusts in the Wind

Read More »

Related Articles

Synopsis: Second Law in an Optical Cavity and a BEC
Atomic and Molecular Physics

Synopsis: Second Law in an Optical Cavity and a BEC

Physicists observe entropy production in two intermediate-scale quantum systems, indicating that the systems have undergone an irreversible process.   Read More »

Viewpoint: Circuit Simulates One-Dimensional Quantum System
Condensed Matter Physics

Viewpoint: Circuit Simulates One-Dimensional Quantum System

An electrical circuit simulates a quantum phase transition induced by the presence of an impurity in a one-dimensional conductor. Read More »

Synopsis: Cooling Large Numbers of Molecules to Low Temperatures
Atomic and Molecular Physics

Synopsis: Cooling Large Numbers of Molecules to Low Temperatures

Researchers demonstrate a method for ultracold cooling and imaging of a dense cloud of molecules. Read More »

More Articles