Synopsis: A Neat Way to Slow Down Light

A new technique slows down light in a crystal by simply shining a laser on it and varying an applied voltage.
Synopsis figure
Q. Li et al., Phys. Rev. A (2017)

When it comes to transmitting information quickly between data processors, photons do better than electrons. For a trivial reason: electrons can’t beat the speed of light. But to store, process, and retransmit this information, that very same light, be it classical or quantum, must also be slowed down and brought to a halt. And these tasks usually require complex tricks. Stefan Kröll and colleagues from Lund University in Sweden have now developed a simple technique for slowing down light in a crystal that relies solely on “burning” a spectral hole in the material and then changing the hole’s width.

The technique involves doing two things to a rare-earth-ion-doped crystal, a promising system for quantum information processing. The first is to fire a laser beam at the crystal to burn a hole in the material’s absorption spectrum, that is, to create a spectral transmission window. The second is to ramp up an applied voltage to reduce the hole’s width. This steepens the refractive-index variation of the crystal across the transmission window, reducing the group velocity of an optical pulse traveling in the crystal, without introducing major pulse distortion or absorption of the pulse energy. The researchers demonstrate that the same method can be used to compress the pulse in time. But it remains to be seen whether the approach can be extended to fully stop the pulse.

This research is published in Physical Review A.

–Ana Lopes

Ana Lopes is a Senior Editor of Physics.


Features

More Features »

Announcements

More Announcements »

Subject Areas

OpticsQuantum Information

Previous Synopsis

Next Synopsis

Related Articles

Focus: <i>Image</i>—Honeycomb Diffraction
Photonics

Focus: Image—Honeycomb Diffraction

Predictions of diffraction patterns for honeycomb photonic crystals were part of a comprehensive study of these structures that may be useful in nanoscale photonic devices. Read More »

Synopsis: Laser Stars Under the Lens
Astrophysics

Synopsis: Laser Stars Under the Lens

Raman scattering could contaminate astronomical observations that use artificial, laser-generated “stars” to correct for the effect of atmospheric turbulence. Read More »

Viewpoint: A Roadmap for a Scalable Topological Quantum Computer
Condensed Matter Physics

Viewpoint: A Roadmap for a Scalable Topological Quantum Computer

A team of experimentalists and theorists proposes a scalable protocol for quantum computation based on topological superconductors. Read More »

More Articles