Synopsis: Optimizing Crop Irrigation

The factors that affect the distribution of water in dry, sandy soil are tested in a lab-scale model.
Synopsis figure
Y. Wei et al., Phys. Rev. Applied (2014)

Improving crop yields in marginal, sandy soils is critical to feeding the world’s growing population. But when water is added to dry soils—either from rainfall or irrigation sources—it tends to flow in channels, as opposed to spreading out evenly, an effect that prevents water from reaching all plant roots. Douglas Durian at the University of Pennsylvania, Philadelphia, and his colleagues have now modeled sandy soils in the laboratory, identifying several strategies that can suppress the formation of water channels and ensure that water is more uniformly distributed to crops.

Durian, collaborating with Rémi Dreyfus and his group at the COMPASS laboratory in Bristol, Pennsylvania, modeled sandy soils using boxes of glass beads, above which they suspended a series of evenly spaced capillaries to provide “rain.” By experimenting on soil in the laboratory—rather than in the field—Durian and his colleagues were able to systematically test how different factors (such as the size of particles that make up the soil and the speed and volume of rainfall) affect the width of water channels and the separation between them. The setup allowed them to confirm that several methods are effective at preventing large channels from forming. One is pre-wetting the soil, which favors the formation of small, irregular water channels over large, defined channels. (The effect occurs because liquids tend to move through wet zones, essentially inflating an already wet layer.) The other method is to add superabsorbent hydrogel particles, which can swell to 5 times their normal size when bathed in water and can clog large channels.

This research is published in Physical Review Applied.

–Katherine Kornei


Features

More Features »

Announcements

More Announcements »

Subject Areas

Fluid Dynamics

Previous Synopsis

Particles and Fields

Proton Longevity Pushes New Bounds

Read More »

Next Synopsis

Related Articles

Synopsis: Antispiral Formation at a Liquid Surface
Fluid Dynamics

Synopsis: Antispiral Formation at a Liquid Surface

Liquid falling from a horizontal film displays an intriguing pattern of inwardly rotating spirals. Read More »

Synopsis: Turning Round Drops Square
Soft Matter

Synopsis: Turning Round Drops Square

Researchers can change the shape of a liquid drop by placing it between two stretched elastic films, allowing the drop to be used as a tiny adjustable lens. Read More »

Synopsis: Uneven Turbine Placement Improves Wind Farms
Energy Research

Synopsis: Uneven Turbine Placement Improves Wind Farms

Wind-tunnel experiments show that uneven positioning of the turbines in a wind farm can improve its power output. Read More »

More Articles