Synopsis: Towards Better Carbon Capture

Calculations show how the efficiency of a promising carbon-capture material can be optimized by adding dopants.
Synopsis figure
Yuhua Duan/National Energy Technology Laboratory

Concerns over climate change have stimulated research into ways of capturing carbon dioxide, so it can be sequestered underground. One technique involves using metal oxides that absorb CO2 over a specific range of temperatures and pressures. New computational work characterizes the behavior of a family of oxides, called alkali zirconates, and shows the effects that doping has on their absorption properties. The results offer a recipe for optimizing a zirconate absorber for carbon-capture applications.

Carbon capture technology is already used in some chemical processing industries, but it is not yet considered efficient enough to trap the CO2 emitted from power plants and other large emitters. One key hurdle is the cost of recycling the sorbent material after it has absorbed CO2 This typically requires heating it above a “turnover temperature,” at which point the material releases its CO2 into a storage tank. Researchers are searching for sorbent materials with low turnover temperatures that will reduce the amount of heating needed.

Recent work has shown that doping alkali zirconates can improve their carbon capture properties. To study this in detail, Yuhua Duan of the National Energy Technology Laboratory, Pennsylvania, and his colleagues performed first-principles calculations on sodium zirconate (Na2ZrO3), doped with either lithium or potassium. The computations described how the doping affects crystal structure, as well as electronic and phonon properties, which in turn influence the binding sites and capture reactions for CO2 The team showed that doping lowers the turnover temperature by an amount that depends on the type and concentration of dopant. The implication is that engineers could choose a dopant, or even a mix of different dopants, to obtain the optimum turnover temperature for a particular application.

This research is published in Physical Review Applied.

–Michael Schirber


Features

More Features »

Announcements

More Announcements »

Subject Areas

Materials ScienceEnergy Research

Previous Synopsis

Next Synopsis

Biological Physics

Microbes Share, But Not Too Much

Read More »

Related Articles

Synopsis: Uneven Turbine Placement Improves Wind Farms
Energy Research

Synopsis: Uneven Turbine Placement Improves Wind Farms

Wind-tunnel experiments show that uneven positioning of the turbines in a wind farm can improve its power output. Read More »

Viewpoint: A Ranking Scheme for Mass-Transport Predictions
Condensed Matter Physics

Viewpoint: A Ranking Scheme for Mass-Transport Predictions

A new theory provides a way to compare the accuracy of different mass-transport calculations, which are widely used to evaluate the performance of materials. Read More »

Focus: How Cracks Interact with the Sounds They Make
Materials Science

Focus: How Cracks Interact with the Sounds They Make

The acoustic waves emitted by a propagating crack can affect the crack’s motion and the marks it leaves behind. Read More »

More Articles