Synopsis: Runaway Brain

Ultralight wirelessly powered devices can stimulate the neurons of a mouse as it moves freely over a large area.
Synopsis figure
Adapted from J. S. Ho et al., Phys. Rev. Applied (2015)

To understand how brain activity is related to behavior, neuroscientists would like to stimulate the neurons of animals as they move, respond to their surroundings, or carry out tasks like searching for food. To allow the animals to move freely, brain-stimulation devices should be powered wirelessly, but available techniques have limited range or require bulky, head-mounted devices. Now, Ada Poon and co-workers at Stanford University in California have demonstrated a wireless scheme that powers tiny devices implanted in a mouse’s brain while permitting the animal to move over a large area.

In the authors’ experiments, a cylindrical radio frequency (RF) cavity, placed beneath a cage, leaks out energy through an array of small apertures. This energy is absorbed by miniaturized coils, which are implanted in the brain and drive a circuit that stimulates the neurons electrically. The setup designed by Poon and her colleagues exploits the characteristic resonant electromagnetic modes in the mouse to optimize the energy transfer from the cavity RF waves to the coils.

The authors showed that the device receives enough power to operate on the full area of the cage (about 16 centimeters in diameter), sufficient for a variety of behavioral experiments. In a proof-of-principle experiment, they stimulated, for 10 minutes, a mouse’s infralimbic cortex, a brain region related to mood disorders and anxiety, showing that they could increase neural activity in the targeted area. About the size of a grain of rice, the device is one hundred times smaller and lighter than those in previously reported schemes.

This research is published in Physical Review Applied.

–Matteo Rini


More Features »


More Announcements »

Subject Areas

Biological Physics

Previous Synopsis

Plasma Physics

Bringing Ions up to Speed

Read More »

Next Synopsis

Atomic and Molecular Physics

Atoms in a Photonic Trap Exhibit Superradiance

Read More »

Related Articles

Synopsis: Explaining Grid-Cell Firing
Biological Physics

Synopsis: Explaining Grid-Cell Firing

A model explains why grid cells—neurons that are part of the brain’s positioning system—fire electrical pulses in hexagonal patterns. Read More »

Synopsis: Bacteria Never Swim Alone
Biological Physics

Synopsis: Bacteria Never Swim Alone

Simulations and theory indicate that the “synchronized swimming” of bacteria occurs in much sparser suspensions of the microorganisms than expected. Read More »

Synopsis: Sensing Earthly Magnetic Fields

Synopsis: Sensing Earthly Magnetic Fields

An organic material’s resistance changes measurably in weak magnetic fields, with a sensitivity similar to that of migrating birds. Read More »

More Articles