Synopsis: Surprises from NMR in sodium cobaltates

After the discovery of superconductivity in doped sodium cobaltate, numerous measurements contributed to mapping out the various magnetic and electronic phases that occur in this material. Now, the report of a new phase diagram may challenge the previous version.
Synopsis figure

A large part of the interest in superconducting NaxCoO2 is that the CoO2 layers are reminiscent of the CuO2 layers in high-Tc cuprates, except that the Co ions sit on a triangular lattice, which enhances the role of magnetic frustration between the Co spins. Also like the cuprates, the layered cobaltate NaxCoO2 displays a rich medley of ordered states: superconductivity when intercalated with water for 1/4<x<1/3, insulating charge-order at x=1/2, and spin-density wave order at x=3/4. The insulating state at x=1/2 separates two distinct metallic states: a paramagnetic metal below x=1/2 and a “Curie-Weiss” metal with antiferromagnetically coupled spins above x=1/2.

While no consensus exists on a theoretical picture, this experimental phase diagram is generally believed to be true. Now, Guillaume Lang and colleagues from Laboratoire de Physique des Solides at Université Paris-sud and Laboratoire Léon Brillouin in Saclay report a rather different phase diagram based on nuclear magnetic resonance experiments. Writing in Physical Review B, the authors find that at low temperatures there exists a critical doping range, x*= 0.63–0.65, below and above which antiferromagnetic and ferromagnetic correlations are, respectively, dominant. This contradicts the nonmagnetic behavior reported earlier for x<1/2.

For 0.5<x<0.62, Lang et al. also identify a doping-dependent temperature scale T*, which separates a high-temperature region with ferromagnetic correlations and a low-temperature region with antiferromagnetic correlations. The T* line slopes away from the insulating limit (x=1/2) in the same way the pseudogap crossover line does in the cuprates. The physical origin of this doping- and temperature-dependent crossover in magnetic correlations is a striking new puzzle for theory to address. – Sarma Kancharla


Features

More Features »

Announcements

More Announcements »

Subject Areas

Superconductivity

Previous Synopsis

Next Synopsis

Particles and Fields

A new partner for the top quark?

Read More »

Related Articles

Viewpoint: Cuprate Superconductors May Be Conventional After All
Condensed Matter Physics

Viewpoint: Cuprate Superconductors May Be Conventional After All

Experiments on a copper-based high-temperature superconductor uncover the existence of vortex states—a hallmark of conventional superconductivity. Read More »

Viewpoint: Order on Command
Condensed Matter Physics

Viewpoint: Order on Command

A current of electrons with aligned spins can be used to modify magnetic order and superconductivity in an iron-based superconductor. Read More »

Synopsis: Photons Couple Like Cooper Pairs
Optics

Synopsis: Photons Couple Like Cooper Pairs

A pairing of photons—similar to the pairing of electrons in superconductors—can occur when light scatters in a transparent medium.   Read More »

More Articles