Synopsis

Making room for holes

Physics 2, s49
The ability to hole-dope Bi2Se3 is an important step toward exploring the thermoelectric properties of this material.
Illustration: Y. S. Hor et al., Phys. Rev. B (2009)

(Bi,Sb)2(Te,Se)3 binary compounds have been extensively studied for their thermoelectric properties. Although primarily Bi2Te3 and also Bi2Se3 are more commonly used as thermoelectric materials, they have recently begun to attract attention due to the promise of hosting so-called topological surface states.

One of the major issues for both thermoelectric applications and fundamental research on topological phases in Bi2Se3 is creating a hole-doped variant of this material. Pure Bi2Se3 exhibits n-type behavior due to the presence of selenium vacancies that act as electron donors, but hole-doping is much more difficult.

Writing in Physical Review B, Yew San Hor and collaborators from Princeton University report that they have managed to dope holes into Bi2Se3 by substituting calcium for bismuth. Scanning-tunneling microscopy reveals that the calcium donates holes that compensate the electrons created by the selenium vacancies.

Angle-resolved photoemission spectroscopy in turn reveals that the hole-doping substantially lowers the Fermi level in Bi2Se3 with respect to that of pure Bi2Se3. In order to access topological surface states, it is necessary to be able to tune the Fermi level, which should be possible in this material. The hole-doped material also exhibits intriguing transport anomalies at low temperatures that are currently not understood. – Alex Klironomos


Subject Areas

Materials Science

Related Articles

Thermal Conductivity Not Too Hot to Handle
Materials Science

Thermal Conductivity Not Too Hot to Handle

A radiometry technique directly measures thermal conductivity in molten metals and confirms the relationship with electrical resistivity. Read More »

Another Twist in the Understanding of Moiré Materials
Materials Science

Another Twist in the Understanding of Moiré Materials

The unexpected observation of an aligned spin polarization in certain twisted semiconductor bilayers calls for improved models of these systems. Read More »

Testing a New Solar Sandwich
Energy Research

Testing a New Solar Sandwich

By combining the world’s oldest photovoltaic material with today’s most used one, researchers have taken a step toward next-generation solar devices. Read More »

More Articles