Synopsis: Dirac cone revealed

The full Dirac spectrum has been measured in intercalated graphite.
Synopsis figure
Illustration: A. Grüneis et al., Phys. Rev. B (2009)

Idealized graphene is a two-dimensional sheet of carbon. The electrons in graphene behave like massless Dirac particles that appear in the electronic band structure as gapless excitations with a linear dispersion—the “Dirac cone.” However, in real life, graphene is never perfectly flat and may interact with the substrate that supports it, which significantly alter graphene’s electronic properties. Invariably, these effects open a gap that limits the observation of relativistic physics in graphene.

In an article appearing in Physical Review B, Alexander Grüneis and colleagues at the IFW in Dresden, Germany, and collaborators from Austria and Spain observe the full Dirac cone dispersion, expected for isolated graphene, in an intercalated graphite compound KC8 using angle resolved photoemission spectroscopy. The KC8 crystal consists of individual graphene sheets separated by layers of potassium. It turns out that there is a complete charge transfer from potassium to the graphene layers but there is no Coulomb interaction between the layers. This preserves the Dirac cone dispersion for both the valence and conduction bands, though the doping shifts the Dirac point away from the chemical potential (differently from what is expected for pristine graphene).

Grüneis et al. also perform electronic structure calculations to find excellent agreement with experimental data as long as electron-electron interactions within the graphene sheets are taken into account. These results provide crucial input to study the electronic and transport properties of isolated graphene, which has hitherto been difficult due to substrate effects. – Sarma Kancharla


More Features »


More Announcements »

Subject Areas


Previous Synopsis

Atomic and Molecular Physics

Cooling with a cavity

Read More »

Next Synopsis


Simulating nuclear pasta

Read More »

Related Articles

Focus: Graphene Sliding on Graphene

Focus: Graphene Sliding on Graphene

Creating a bulge in a graphene sheet offers the first measurement of the shear forces between graphene layers, an essential factor in many graphene-based devices. Read More »

Synopsis: Crumpled Graphene

Synopsis: Crumpled Graphene

The crumpling of graphene sheets explains a “soft spot” in the material’s mechanical response. Read More »

Synopsis: Protons in the Fast Lane
Energy Research

Synopsis: Protons in the Fast Lane

A proposed graphene-based material could offer speedy transport of protons without the need for water. Read More »

More Articles