Synopsis

Dirac connection

Physics 3, s3
Ballistic electron transport through a clean superconductor with d-wave symmetry has features in common with graphene.
Illustration: J. K. Asbóth et al., Phys. Rev. B (2009)

In response to a voltage, the electrical current in a pure sheet of graphene diminishes as 1/L, where L is the length over which the current is transmitted. This form of scaling, called pseudodiffusive because of its similarity to diffusion in a random potential, occurs when L is less than the width of the sheet and the mean free path.

In graphene, pseudodiffusion occurs because the electrons behave like massless Dirac fermions. Now, in a paper appearing in Physical Review B, János Asbóth and collaborators at Leiden University in the Netherlands calculate the transmission of electrons and holes between two normal-metal electrodes, separated over a distance L by a clean d-wave superconductor. Asbóth et al. find that the transmitted electrical and thermal currents both have the pseudodiffusive 1/L scaling characteristic of massless Dirac fermions—regardless of the presence of tunnel barriers at the metal-superconductor interfaces—as long as L is larger than the superconducting coherence length and smaller than the width of the superconductor and the mean free path. This occurs because the d-wave superconductor forms ballistic conduction channels for coupled electron-hole excitations that are described by an anisotropic two-dimensional Dirac equation analogous to that of graphene. This finding is likely to spur experimental efforts to search for pseudodiffusive transmission in clean single crystals of high- Tc cuprates. – Sarma Kancharla


Subject Areas

SuperconductivityGraphene

Related Articles

Zero-Resistance State for a Potential High-Temperature Superconducting Nickelate
Superconductivity

Zero-Resistance State for a Potential High-Temperature Superconducting Nickelate

Researchers have measured a zero-resistance state for the nickelate La3Ni2O7, which measurements suggest may superconduct at temperatures above the boiling point of liquid nitrogen. Read More »

Composite Fermions Are Better Together
Quantum Physics

Composite Fermions Are Better Together

Particle pairing seen in nanoscale semiconductor devices could point the way to materials that superconduct at high temperatures. Read More »

Device Could Lead to New Current-Measurement Standard
Superconductivity

Device Could Lead to New Current-Measurement Standard

High-precision measurements of the oscillations generated by a superconducting device suggest that an improved electric-current-calibration standard should be possible. Read More »

More Articles