Synopsis

Intrinsic anomalous Hall current is scattering free

Physics 3, s21
New experiments indicate that the intrinsic regime of the anomalous Hall effect is independent of scattering.
Illustration: Alan Stonebraker

The anomalous Hall effect is an intriguing variant of the ordinary Hall effect, in which a magnetic field applied through a conductor causes a voltage to arise perpendicular to it. For ferromagnets, the magnetization of the conductor causes another contribution to the Hall effect, larger than the ordinary Hall effect, hence the anomaly. The effect is too big to be the simple result of the addition of the magnetization to the applied magnetic field, and the debate continues regarding the cause of the anomalous Hall effect in ferromagnetic materials. Recent experimental and theoretical works show that the anomalous Hall effect is mostly caused by the Berry phase of band electrons.

In a paper published in Physical Review B, Yuki Shiomi, Yoshinori Onose, and Yoshinori Tokura of the University of Tokyo, Japan, have investigated the effect of scattering on the intrinsic anomalous Hall effect in iron, nickel, and cobalt, and their related alloys. They separate out the regular Hall effect from its anomalous counterpart and find the transition from scattering-dependent to scattering-free behavior with decreasing resistivity. The results indicate that the Berry phase induced anomalous Hall effect is not affected by scattering in clean samples. – Daniel Ucko


Subject Areas

MagnetismSpintronics

Related Articles

Magnetic Vortex Rings on Demand
Condensed Matter Physics

Magnetic Vortex Rings on Demand

Scientists have devised a promising method for generating and manipulating exotic spin patterns called magnetic vortex rings, which could have applications in energy-efficient data storage and processing. Read More »

Voltage Control over Magnons
Spintronics

Voltage Control over Magnons

Researchers have demonstrated that magnetic spin waves called magnons can be controlled by voltage and thus could operate more efficiently as information carriers in future devices. Read More »

Experimental Evidence for a New Type of Magnetism
Condensed Matter Physics

Experimental Evidence for a New Type of Magnetism

Spectroscopic data suggest that thin films of a certain semiconducting material can exhibit altermagnetism, a new and fundamental form of magnetism. Read More »

More Articles