Synopsis

Resurrecting graphene with a breath of oxygen

Physics 3, s111
A quick and simple processing method ensures that the first layer of graphene grown on silicon carbide will perform as expected.
Illustration: S. Oida et al., Phys. Rev. B (2010)

Graphene holds considerable promise for a new generation of electronics based on carbon. Among the many existing methods for fabricating graphene, one of the most appealing is preparing graphene layers on silicon carbide by either sublimating silicon or depositing carbon. However, a serious limitation of this approach is that the first graphene layer—the one directly on the silicon carbide—loses its trademark properties, serving instead as an electronically dead “buffer layer.”

In a paper appearing in Physical Review B, Satoshi Oida and collaborators from the IBM T. J. Watson Research Center show that by exposing the buffer layer to oxygen at 250 C, an ultrathin ( 3 Å) silicon oxide layer is formed between the buffer layer and the substrate. The oxide layer “lifts” the buffer layer by effectively decoupling it from the substrate and restores to this first carbon layer the essential electronic properties of graphene.

Oida et al.’s method has the advantage that it is simple, quick, and safe to implement and can be applied to prefabricated devices. – Alex Klironomos


Subject Areas

GrapheneMaterials Science

Related Articles

Thermal Conductivity Not Too Hot to Handle
Materials Science

Thermal Conductivity Not Too Hot to Handle

A radiometry technique directly measures thermal conductivity in molten metals and confirms the relationship with electrical resistivity. Read More »

Another Twist in the Understanding of Moiré Materials
Materials Science

Another Twist in the Understanding of Moiré Materials

The unexpected observation of an aligned spin polarization in certain twisted semiconductor bilayers calls for improved models of these systems. Read More »

Testing a New Solar Sandwich
Energy Research

Testing a New Solar Sandwich

By combining the world’s oldest photovoltaic material with today’s most used one, researchers have taken a step toward next-generation solar devices. Read More »

More Articles