Synopsis: Unconventional pairs

A crystal lacking inversion symmetry shows signatures of unconventional superconducting pairing.
Synopsis figure
Credit: Adapted from A. B. Karki et al., Phys. Rev. B (2010)

In superconductors, the appearance of dissipationless current is related to the formation of electron pairs with opposite spin and momentum. The symmetry of these pairs, which is constrained by the symmetries of the underlying crystal structure, defines important aspects of the superconducting state. So what happens to superconductivity when electron pairing occurs in a crystal structure that has no center of inversion?

This interesting question has been investigated in detail theoretically, and it was realized that in such cases the superconducting pairing is unconventional. In conventional (centrosymmetric) superconductors there can only be either spin-singlet or spin-triplet electron pairing, but in the absence of space-inversion symmetry the two can mix by the action of spin-orbit interaction (a relativistic effect), leading to unusual superconducting behavior.

This theoretical prediction has been tested experimentally in two independent articles that appear in Physical Review B. Ernst Bauer and collaborators from the Vienna University of Technology, Austria, with collaborators from China and Japan in one group, and Amar Karki and collaborators from Louisiana State University, US, with collaborators from Iowa State University, US, in the other, successfully grow and characterize Mo3Al2C. This material crystallizes in a noncentrosymmetric structure and undergoes a superconducting transition at Tc9K. Both groups observe signs of unconventional pairing, hinting at a strong connection between noncentrosymmetry and unconventional superconductivity. – Athanasios Chantis


More Features »


More Announcements »

Subject Areas


Previous Synopsis

Next Synopsis

Quantum Information

A spin on graphene

Read More »

Related Articles

Synopsis: Tinkering with Superconductivity in a Quasicrystal

Synopsis: Tinkering with Superconductivity in a Quasicrystal

Quasicrystals might host an exotic superconducting phase when subjected to a magnetic field, according to a theoretical study. Read More »

Viewpoint: A Prediction for “Hot” Superconductivity
Materials Science

Viewpoint: A Prediction for “Hot” Superconductivity

A proposed hydrogen-rich solid would superconduct above the boiling point of water—though the material would need to be subjected to a colossal pressure. Read More »

Synopsis: An Airless Test for 2D Superconductors

Synopsis: An Airless Test for 2D Superconductors

Researchers repurpose a scanning tunneling microscope to measure the Meissner effect in 2D films kept under vacuum, allowing for confirmation of superconductivity. Read More »

More Articles