Synopsis: Chemical manipulation of nitrogen-vacancy centers in diamond

Surface termination is used to chemically control the state of nitrogen-vacancy centers in diamond.
Synopsis figure
Credit: M. Hauf et al., Phys. Rev. B (2011)

A nitrogen-vacancy (NV) center in diamond is a point defect consisting of a nitrogen atom substituting for a carbon atom that sits beside a lattice vacancy. The defect with two well-known charge states, a neutral NV0 and a negatively charged NV- state, has received considerable attention because of its unique photoluminescence properties in the visible range, allowing an optical readout of the spin state at room temperature. The excitement around the NV centers in diamond comes from their potential use for spintronics applications and quantum computation.

In a recent Rapid Communication in Physical Review B, Moritz Hauf and collaborators from Technische Universität München, University of Stuttgart, and Ruhr-Universität Bochum, all in Germany, have found a way to chemically control the charge state of NV centers in diamond. By changing the surface termination from oxygen to hydrogen, stable NV- centers, ion-implanted a few nanometers below the surface of diamond, are converted into an NV0 state and subsequently into a nonfluorescent state. Hauf et al. also study numerically the band bending from the surface termination that induces a p-type surface conductive layer to deplete the electrons in the NV- centers underneath. The deeper the NV centers are implanted into the crystal, the weaker is the effect of the surface termination. This work opens the way to an electrostatic means of switching the charge state of NV centers using an external gate electrode, an important step forward for realizing spintronics applications. – Sarma Kancharla


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum InformationSpintronics

Previous Synopsis

Atomic and Molecular Physics

Quantum simulation of an old paradox

Read More »

Next Synopsis

Interdisciplinary Physics

Freeze frame

Read More »

Related Articles

Focus: Germanium Revived from the Spintronics Graveyard
Spintronics

Focus: Germanium Revived from the Spintronics Graveyard

Germanium produces a surprisingly large separation of electron spins in response to electric current—good news for spin-based devices, since germanium is highly compatible with silicon. Read More »

Viewpoint: Photonic Hat Trick
Optics

Viewpoint: Photonic Hat Trick

Two independent groups have provided the first experimental demonstration of genuine three-photon interference. Read More »

Viewpoint: Microwave Quantum States Beat the Heat
Quantum Information

Viewpoint: Microwave Quantum States Beat the Heat

A new quantum communication protocol is robust in the presence of thermal noise, paving the way for all-microwave quantum networks. Read More »

More Articles