Synopsis: Imaging puddles

A gold nanoparticle at the end of an STM tip is used to image the local charge fluctuations on a sheet of graphene.
Synopsis figure
Credit: A. Deshpande et al., Phys. Rev B (2011)

Graphene, a two-dimensional form of carbon where charged carriers behave like massless Dirac particles, has some remarkable properties that hold much promise for device applications, but there remain several challenges. One of them is to control the effect of randomly charged impurities located on graphene, as well as between graphene and the substrate, typically, SiO2. These impurities lead to the formation of electron and hole puddles that reduce the high mobility of charge carriers in graphene. Charge puddles, whose characteristic size is unknown, can also be caused by strain from ripples in a graphene sheet.

In a paper to appear in Physical Review B, A. Deshpande and colleagues from the University of Arizona in Tucson and the University of California, Riverside, use scanning tunneling microscopy with a gold particle attached to the STM tip to image the local potential over graphene on a SiO2 substrate. They achieve unprecedented resolution and show that the characteristic puddle size is about 20nm. Previous measurements using a single electron transistor (SET) and relying on a shift of the local density of states were able to measure charge density variations on a scale of approximately 150nm. In the setup of Deshpande et al., the availability of two tunnel barriers, tip-to-nanoparticle and nanoparticle-to-graphene, permits the use of the Coulomb blockade phenomenon. Coulomb blockade is essentially the suppression of electron tunneling when the charging energy e2/2C, C being the capacitance of the nanoparticle, is too high for electrons at low temperature and voltage. As the Coulomb blockade phenomenon is sensitive to both the capacitance and the electrostatic environment of the nanoparticle, peaks in the differential conductance permit a significantly higher energy resolution. This technique will enable the detection of impurities on graphene flakes for quality control during device fabrication. – Sarma Kancharla


Features

More Features »

Announcements

More Announcements »

Subject Areas

Graphene

Previous Synopsis

Atomic and Molecular Physics

Decrypting krypton

Read More »

Next Synopsis

Particles and Fields

Where are the neutrinos?

Read More »

Related Articles

Synopsis: Nonmetallic Tin Behaves Like 3D Graphene
Graphene

Synopsis: Nonmetallic Tin Behaves Like 3D Graphene

By applying strain to a form of tin, researchers make it behave like a 3D analog of graphene. Read More »

Synopsis: Dirac Cones in Boron’s Version of Graphene
Materials Science

Synopsis: Dirac Cones in Boron’s Version of Graphene

A one-atom-thick sheet of boron atoms exhibits Dirac cones, marking the first time this electronic property has been found in a material lacking a graphene-like crystal structure.  Read More »

Synopsis: Graphene’s Elegant Optics Explained
Graphene

Synopsis: Graphene’s Elegant Optics Explained

Theoretical calculations anchor graphene’s simple optical absorption in its two-dimensional structure instead of its cone-shaped energy bands. Read More »

More Articles