Synopsis: Probing Chirality with Electron Vortices

Electron vortices can determine the chirality of crystals in high-resolution imaging techniques.
Synopsis figure
R. Juchtmans et al., Phys. Rev. B (2015)

Chiral molecules, like our hands, come in two versions (“enantiomers”) with different handedness. Chirality can affect a molecule’s chemical behavior and is thus important in medicine and biology; for instance, only one of the two enantiomers of a drug molecule might bind to a targeted receptor. A new method, demonstrated by Jo Verbeeck and colleagues at the University of Antwerp, Belgium, could allow researchers to determine the chirality of crystalline samples using transmission electron microscopy (TEM). The scheme exploits so-called electron vortices, which have a “corkscrew” shape that makes them sensitive probes of a crystal’s handedness.

Electron vortices are beams of electrons that, thanks to their spiraling wave front, carry angular momentum. The authors modeled the pattern of diffracted electrons that are observed when a focused electron-vortex beam scatters from chiral crystals. Their analysis showed that left- and right-handed enantiomers generate patterns with different symmetries, providing a way to distinguish them. The technique also has an important advantage: it can determine the handedness of extremely thin samples, allowing the investigation of very small volumes of materials—potentially as small as a single molecule. The researchers demonstrated the technique experimentally by feeding an electron-vortex beam into a TEM and using it to analyze a chiral magnet (Mn2Sb2O7), showing their sample was of the right-handed variant. TEMs with chiral sensitivity might become useful in the analysis of biochemical drugs, in which chemicals can be active, inert, or even harmful, depending on their handedness.

This research is published in Physical Review B.

–Matteo Rini


Features

More Features »

Announcements

More Announcements »

Subject Areas

OpticsBiological Physics

Previous Synopsis

Atomic and Molecular Physics

Spin-Orbit-Coupled Photons

Read More »

Next Synopsis

Related Articles

Focus: Twisted Light in a Photonic Chip
Optics

Focus: Twisted Light in a Photonic Chip

Light waves capable of storing quantum information can propagate through a photonic chip waveguide and potentially be used for on-chip computation. Read More »

Focus: Computing with Wi-Fi Waves
Optics

Focus: Computing with Wi-Fi Waves

Experiments demonstrate that a room in a house or office building could act as an analog computer processing the microwaves used for Wi-Fi. Read More »

Synopsis: Laser Light Cools Propagating Sound Waves
Optics

Synopsis: Laser Light Cools Propagating Sound Waves

An optomechanical scheme selectively dampens sound waves traveling in a centimeter-long optical waveguide. Read More »

More Articles