Synopsis: A Polariton Beam Amplifier

A scheme based on a planar waveguide can amplify a beam of polaritons without distorting it.
Synopsis figure
D. Niemietz et al., Phys. Rev. B (2016)

Polaritons are hybrid particles resulting from the coupling of photons to excitations of a material like phonons or excitons (electron-hole pairs). They could be used to carry signals in high-speed logic devices, but polaritons decay rapidly as they travel, making their amplification a key requirement for applications. However, demonstrated amplifiers often perturb or distort the polariton beam. Now, Marc Aßmann at the Technical University of Dortmund, Germany, and co-workers have realized a polariton amplifier that avoids this problem by trapping the polariton beam as it gets amplified.

Polaritons are typically created by hitting a solid with ultrashort laser pulses, they then propagate laterally away from the excitation region. Propagating polaritons can be amplified by a second laser, which creates excitons that, under certain conditions, provide a gain medium for polaritons. However, in previous schemes, the excitons also repelled the polariton beam, causing it to scatter or split into multiple unwanted beams.

Aßmann’s group engineered a planar waveguide made of quantum-well layers in which polaritons can be efficiently generated. By illuminating the device with two concentric semicircular laser spots, the researchers were able to generate a U-shaped “chicane” of polaritons, which flowed between the laser spots. At the output of the chicane the polaritons were channeled into a thicker section of the waveguide that acted as a polariton trap and amplifier. Thanks to the trapping effect, the beam was amplified sevenfold without being scattered.

This research is published in Physical Review B.

–Matteo Rini

Matteo Rini is the Deputy Editor of Physics.


Features

More Features »

Announcements

More Announcements »

Subject Areas

OpticsCondensed Matter Physics

Previous Synopsis

Fluid Dynamics

Droplet Hats

Read More »

Next Synopsis

Acoustics

Bang a Gong

Read More »

Related Articles

Synopsis: Hidden Structure of Plasmons
Plasmonics

Synopsis: Hidden Structure of Plasmons

Calculations of the current density within collective charge oscillations called plasmons reveal a complicated structure that could affect how plasmons reflect off a boundary. Read More »

Synopsis: Stretching Graphene Localizes its Electrons
Graphene

Synopsis: Stretching Graphene Localizes its Electrons

The electrical properties of a graphene bilayer can be tuned by stretching and rotating one of the bilayer’s sheets. Read More »

Synopsis: Getting More out of Electron Microscopy
Materials Science

Synopsis: Getting More out of Electron Microscopy

A new analysis technique allows researchers to extract atomic-resolution holographic images of materials using a transmission electron microscope. Read More »

More Articles