Synopsis: The Square Root to Topological States

A theoretical recipe generates a lattice with topological states by taking the square root of a normal lattice.
Synopsis figure
H. Schomerus/Lancaster University

How do you design a topological material from scratch? That’s a question researchers are asking a lot these days as they look to build lattices for electrons, atoms, light, and sound that, by virtue of the lattice’s symmetry, host states that are immune to disturbance. Jake Arkinstall of Lancaster University, UK, and colleagues offer one answer: start with a regular crystal lattice and then take the square root of the quantum-mechanical equation that describes it. In certain cases, the solution of this new equation will describe a lattice with topological states. And unlike other recipes for engineering topological materials, this one doesn’t introduce new ingredients—the elements in the “parent” lattice and its square-root “child” are the same, it’s only the couplings between the elements that change.

The team’s approach has a famous precedent: In the 1920s, Dirac discovered the positron when he took the square root of the Klein-Gordon equation for relativistic particles. Arkinstall and colleagues carry this idea over to so-called tight-binding models, which are often used to calculate the energy bands for electrons in solids or light in a waveguide array. First, they consider a representative example: a 1D lattice with topological states known as the bow-tie lattice, which consists of atom pairs placed head-to-toe in a line. They show that the Hamiltonian for this lattice is the square root of the Hamiltonian for a (nontopological) lattice of atom pairs arranged like steps in a ladder. Extrapolating from this case, the authors define general features of a square-root operation that results in a topological lattice, both in 1D and in 2D.

This research is published in Physical Review B.

–Jessica Thomas

Jessica Thomas is the Editor of Physics.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Topological InsulatorsCondensed Matter Physics

Previous Synopsis

Next Synopsis

Biological Physics

Jiggles that Help Bat Biosonar

Read More »

Related Articles

Viewpoint: Topological Insulators Turn a Corner
Condensed Matter Physics

Viewpoint: Topological Insulators Turn a Corner

Theorists have discovered topological insulators that are insulating in their interior and on their surfaces but have conducting channels at corners or along edges. Read More »

Viewpoint: Cuprate Superconductors May Be Conventional After All
Condensed Matter Physics

Viewpoint: Cuprate Superconductors May Be Conventional After All

Experiments on a copper-based high-temperature superconductor uncover the existence of vortex states—a hallmark of conventional superconductivity. Read More »

Viewpoint: Order on Command
Condensed Matter Physics

Viewpoint: Order on Command

A current of electrons with aligned spins can be used to modify magnetic order and superconductivity in an iron-based superconductor. Read More »

More Articles