Synopsis: An Atlas for 2D Metals

A new “atlas” lists the predicted properties of two-dimensional materials that could be formed from many metallic elements in the periodic table.
Synopsis figure
J. Nevalaita/University of Jyväskylä

Since the isolation of graphene in 2004, researchers have investigated hundreds of two-dimensional (2D) materials, which are one or a few atomic layers thick and can feature exceptional strength or electron mobility. The structures and properties of these materials are determined by their chemical bonds, which are usually covalent, as in graphene. But 2D materials with metallic bonding have recently shown promise for catalysis and gas sensing applications. Now two theorists have performed a systematic study of 2D materials that could be formed from many metallic elements. They then compiled an “atlas” that could guide researchers trying to synthesize these materials.

While only a few elemental 2D metals have previously been investigated, both experimentally and theoretically, Janne Nevalaita and Pekka Koskinen of the University of Jyväskylä in Finland carried out a density-functional study of 2D materials that could be formed from 45 metallic elements, ranging from lithium to bismuth. For each one, they calculated key properties related to structure and mechanical strength: average bond lengths, cohesive energy (a measure of how strongly the lattice of atoms is bound together), and bulk modulus (a measure of compressibility). The calculations suggest that the properties of a 2D material are “inherited” from those of the 3D version of the same metal and can thus be calculated from the 3D-metal’s properties through linear extrapolation. For each 2D metal, the duo analyzed three possible crystal lattice configurations—hexagonal, square, and honeycomb—pinpointing those most likely to lead to strong and stable sheets that are not prone to warping.

This research was published in Physical Review B.

–Matteo Rini

Matteo Rini is the Deputy Editor of Physics.


More Features »

Subject Areas

Materials ScienceCondensed Matter Physics

Previous Synopsis

Semiconductor Physics

Plasmon Thermometers for Silicon

Read More »

Next Synopsis

Related Articles

Synopsis: Atoms Put On a Bloch Party
Atomic and Molecular Physics

Synopsis: Atoms Put On a Bloch Party

Bloch oscillations—first predicted to occur for electrons in a crystal—have been observed in an optical lattice containing ultracold atoms. Read More »

Viewpoint: Crystal Defects Mimic Elusive Fractons
Condensed Matter Physics

Viewpoint: Crystal Defects Mimic Elusive Fractons

A newly discovered duality shows that crystalline defects exhibit the behavior of exotic theoretical particles known as fractons. Read More »

Synopsis: Time Crystals Multiply
Atomic and Molecular Physics

Synopsis: Time Crystals Multiply

Researchers uncover evidence of two new time crystals in systems of spins periodically driven by NMR pulses. Read More »

More Articles