Synopsis: Trinucleon physics

Calculations that account for the Coulomb interaction provide a more complete picture of proton-deuteron scattering.
Synopsis figure
Illustration: Carin Cain

Trinucleon physics encompasses the bound state of three nucleons, nucleon-deuteron elastic scattering, and reactions between a nucleon and a deuteron that lead to free nucleons. Calculating the properties of the three-nucleon system is a formidable challenge, and as such plays a key role in developing our understanding of nuclear forces.

Modeling the scattering and reactions between a neutron and a deuteron, where there is no Coulomb potential, is considerably simpler than for the proton-deuteron system. For this reason, even though there are more data for the proton-deuteron system, the corresponding comprehensive calculations above the threshold for breakup into free nucleons are lacking, hindering progress in this field. In a paper appearing in Physical Review C, Arnoldas Deltuva at the Universidade de Lisboa in Portugal remedies this situation.

Deltuva presents, for the first time, a calculation of the elastic scattering of a proton and a deuteron, and the breakup observables, that includes both a realistic three-nucleon force (the phenomenological Urbana UR-IX model, which utilizes parameters constrained by nuclear matter calculations) and the Coulomb interaction between the two protons. The realistic Argonne v18 model is used to describe the nucleon-nucleon interactions. Comparison with precision data at two energies illustrates that including the Coulomb interaction can significantly increase or decrease the differential cross section.

A clear signal of three-nucleon force effects can be seen in the spin observables, the result of a complex interplay between the three-nucleon force and the Coulomb interaction. Unfortunately, the low-energy “space star anomaly,” in which the three nucleons emerge separated by equal angles, remains unresolved. – Benjamin Gibson


Features

More Features »

Announcements

More Announcements »

Subject Areas

Nuclear Physics

Previous Synopsis

Materials Science

Thrown out of the nest

Read More »

Next Synopsis

Related Articles

Viewpoint: Watching the Hoyle State Fall Apart
Nuclear Physics

Viewpoint: Watching the Hoyle State Fall Apart

Two experiments provide the most precise picture to date of how an excited state of carbon decays into three helium nuclei. Read More »

Synopsis: Strong Force Calculations for Weak Force Reactions
Nuclear Physics

Synopsis: Strong Force Calculations for Weak Force Reactions

Theorists have used lattice-QCD calculations to predict two weak-force-driven reactions—proton fusion and tritium decay. Read More »

Synopsis: Proton Loses Weight
Particles and Fields

Synopsis: Proton Loses Weight

The most precise measurement to date of the proton mass finds a value that is 3 standard deviations lower than previous estimates. Read More »

More Articles