Synopsis: Whence Antineutrinos?

Theorists suggest which fission fragments should be experimentally characterized to better understand antineutrino emission in nuclear reactors.
Synopsis figure
Elizabeth McCutchan/Brookhaven National Laboratory

Nuclear reactors are intense sources of neutrinos, generating over 1020 antineutrinos per second as fission products undergo beta decay. Detecting these antineutrinos could be used to monitor reactors in nonproliferation programs but also to test fundamental questions in neutrino physics: recent measurements revealed that the measured antineutrino flux is lower than predicted—a puzzling finding known as the “antineutrino anomaly.” Such a deficit could imply that some neutrinos are lost, for instance, by transforming into undetectable “sterile” neutrinos not predicted by the standard model. Now, the calculations of scientists from the National Nuclear Data Center at Brookhaven National Laboratory, New York, may lead to better models of antineutrino emission for both fundamental studies and applications. The results suggest that just a few among hundreds of possible fission fragments are responsible for most of the detectable antineutrinos emitted by a fission reactor.

The authors modeled antineutrino spectra using a “summation method”: for the four most important fissile nuclei contained in the fuel of conventional reactors (uranium-235, uranium-238, plutonium-239, and plutonium-241), they calculated the spectrum of emitted antineutrinos by summing up the contribution from each possible fission fragment. Out of 800 nuclides that can contribute to antineutrino emission, the authors’ analysis showed that only a handful of nuclides (92-rubidium and 96-ytterbium in particular) provide the majority of neutrinos, in particular at the high-energy side of the spectrum (where the discrepancies between theory and experiments are expected to be larger). The results suggest that to tackle the antineutrino anomaly with more accurate models​, experiments should thus focus on characterizing these few key nuclei, since small changes in their beta-decay parameters will have a strong effect on the antineutrino emission.

This research is published in Physical Review C.

–Matteo Rini


Features

More Features »

Announcements

More Announcements »

Subject Areas

Nuclear PhysicsParticles and Fields

Previous Synopsis

Magnetism

Magnetic Graphene

Read More »

Next Synopsis

Physical Chemistry

Have Water, Will Charge

Read More »

Related Articles

Synopsis: Proton Loses Weight
Particles and Fields

Synopsis: Proton Loses Weight

The most precise measurement to date of the proton mass finds a value that is 3 standard deviations lower than previous estimates. Read More »

Viewpoint: Scattering Experiments Tease Out the Strong Force
Particles and Fields

Viewpoint: Scattering Experiments Tease Out the Strong Force

The scattering of protons from a carbon isotope can be used to test models of the strong force. Read More »

Viewpoint: Getting to the Bottom of an Antineutrino Anomaly
Particles and Fields

Viewpoint: Getting to the Bottom of an Antineutrino Anomaly

The Daya Bay Collaboration reports that sterile neutrinos probably aren’t behind a puzzling deficit in detected antineutrinos at nuclear reactors. Read More »

More Articles