Synopsis: Neutron Stars in a Petri Dish

Simulations of the dense matter in a neutron star’s crust predict the formation of structures that resemble those found in biological membranes.
Synopsis figure
D. K. Berry et al., Phys. Rev. C (2016)

Astrophysicists can only indirectly infer what’s inside of a collapsed supernova, or neutron star. But perhaps an analog system is just a microscope away. Theorists simulating the structure of a neutron star’s crust have identified features similar to those observed in cellular membranes. The finding suggests that although neutron stars and membranes differ by 14 orders of magnitude in their density, their structures may be determined by the same geometric constraints.

The outer layer of a neutron star is a dense blend of protons, neutrons, and electrons, in which long-range repulsive (Coulomb) forces compete with the shorter-range and attractive strong force. Simulations have shown that the balance of these forces causes matter to organize into dense regions separated by voids. These structures, termed “nuclear pasta” for their resemblance to shapes like lasagna and spaghetti, can influence a star’s heat loss and magnetic field.

Charles Horowitz of Indiana University, Bloomington, and colleagues previously predicted the lowest-energy pasta phase in dense nuclear matter using molecular dynamics simulations. By chance, Greg Huber, a biophysicist at the University of California, Santa Barbara, came across an article about the structures and recognized that one of them had a striking resemblance to the membrane folds in endoplasmic reticulum, a part of the cell involved in protein folding and transport. The researchers have now teamed up to study how this phase self-assembles out of uniformly distributed protons, neutrons, and electrons. Their simulations show that the particles organize into high-density filaments and then expand into layers connected by pairs of ramp-like junctions—similar to the floors of a parking garage. Having seen the same shapes in dense nuclear matter and biological membranes, the researchers speculate that the energies of both systems depend on their geometry in a simple, universal way.

This research is published in Physical Review C.

–Jessica Thomas

Jessica Thomas is the Editor of Physics.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Nuclear PhysicsAstrophysicsBiological Physics

Previous Synopsis

Particles and Fields

Making Monopoles with Waves

Read More »

Next Synopsis

Quantum Information

Quantum Cryptography Goes a Long Way

Read More »

Related Articles

Synopsis: Minimum Mass of Magnetic Monopoles
Particles and Fields

Synopsis: Minimum Mass of Magnetic Monopoles

A new analysis places some of the tightest bounds yet on the mass that magnetic monopoles should have if they exist. Read More »

Viewpoint: Out of Neutron Star Rubble Comes Gold
Nuclear Physics

Viewpoint: Out of Neutron Star Rubble Comes Gold

New calculations show that the accretion flows that form after a neutron star collision can eject large amounts of matter that is rich in gold and other heavy elements. Read More »

Synopsis: Gravitational Waves Could Reveal Black Hole Origins
Gravitation

Synopsis: Gravitational Waves Could Reveal Black Hole Origins

Observations of black hole mergers in the very distant Universe could indicate whether all black holes form from stars.   Read More »

More Articles