Synopsis: Intel on Stellar Element Production from Accelerator Data

Measurements of a nuclear reaction relevant to the synthesis of calcium, potassium, and argon in stars boost the accuracy of models for predicting the elements’ abundances.

Classical novae—thermonuclear explosions occurring when a white dwarf accretes material from a companion star—are thought to be an important source of the elements up to calcium. However, there are large uncertainties in the existing model predictions of the amounts of the elements generated in novae. Such shortcomings are partly due to poor knowledge of the rates of the nuclear reactions through which such elements are created. Now Gregory Christian, at Texas A&M University in College Station, and colleagues have characterized one such reaction with unprecedented precision. According to the authors’ analysis, the new results dramatically reduce the uncertainties of model calculations.

The researchers focused on a reaction in which the nucleus potassium-38 captures a proton to form calcium-39 and releases gamma rays. Previous theoretical work indicated that for certain types of novae this reaction was a major determinant of the production rate for calcium, potassium, and argon. In the experiments carried out at TRIUMF, Canada’s national laboratory for particle and nuclear physics, the team directed a beam of radioactive potassium-38 onto a target of hydrogen gas. Using TRIUMF’s Detector of Recoils And Gammas Of Nuclear Reactions (DRAGON), they then counted the rate at which calcium-39 and the gamma rays were produced in coincidence. From such measurements, the team obtained an estimate of the reaction rate with an uncertainty—defined as the ratio of the upper to the lower limit for the rate—of about 15, which is 250 times better than previous estimates. They found that the new limits improve the accuracy of abundance predictions for the three elements by about a factor of 10.

This research is published in Physical Review C.

–Matteo Rini

Matteo Rini is the Deputy Editor of Physics.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Nuclear PhysicsAstrophysics

Previous Synopsis

Statistical Physics

The Benefits of Starting Anew

Read More »

Next Synopsis

Related Articles

Synopsis: Hunting for Hair on Coalescing Black Holes
Gravitation

Synopsis: Hunting for Hair on Coalescing Black Holes

A fresh look at data from the first detected black-hole merger supports the “no hair” theorem and proves the potential of black-hole spectroscopy. Read More »

Synopsis: Seeking Stardust in the Snow  
Astrophysics

Synopsis: Seeking Stardust in the Snow  

Iron-60 found in fresh Antarctic snow was forged in nearby supernovae and could help deduce the structure and origin of interstellar dust clouds.   Read More »

Synopsis: Laser Stars for Astrophysical Calibrations
Astrophysics

Synopsis: Laser Stars for Astrophysical Calibrations

Laser-generated “stars”—used at telescopes to correct for atmospheric turbulence—could help researchers calibrate the wavelengths of certain astrophysical observations. Read More »

More Articles