Synopsis: Coming off the Grid

Theorists uncover universal effects underlying computer simulations of finite volume systems.
Synopsis figure
Courtesy Sebastian König, University of Bonn

Lattice gauge theory is the art and science of simulating the dynamics of particles and fields on computers. Most lattice computations approximate continuous space and time by a lattice—or a grid—of a finite size. However, such computations often suffer from “finite volume effects,” where the results depend on the size of the grid. These effects need to be understood and separated out from the results of simulations before one can get meaningful physical answers for the continuum, infinite volume theory of interest.

Writing in Physical Review D, Shahin Bour at the University of Bonn, Germany, and collaborators show that the finite volume corrections to the energy of bound states moving in a finite periodic box have a universal character that is topological in origin, that is, they are independent of the details of the system’s geometry. These corrections contain information about the number and masses of the constituents of the bound state. Bour et al. also compute finite volume corrections to calculations of the scattering of bound states.

The authors verify their analytical results against numerical calculations using effective field theory models and find good agreement. Bour et al.’s results will be useful both for extrapolating lattice quantum chromodynamics calculations to the infinite volume limit, and studying few-body scattering in nuclear and cold atom systems. – Urs Heller and Abishek Agarwal


Features

More Features »

Announcements

More Announcements »

Subject Areas

Particles and FieldsComputational Physics

Previous Synopsis

Gravitation

Wrestling with Infinities

Read More »

Next Synopsis

Nonlinear Dynamics

You Don’t Cite Me Anymore

Read More »

Related Articles

Synopsis: Minimum Mass of Magnetic Monopoles
Particles and Fields

Synopsis: Minimum Mass of Magnetic Monopoles

A new analysis places some of the tightest bounds yet on the mass that magnetic monopoles should have if they exist. Read More »

Synopsis: Relativity Survives Scrutiny, Again
Gravitation

Synopsis: Relativity Survives Scrutiny, Again

Two independent studies show no evidence that a fundamental symmetry in relativity, known as Lorentz invariance, breaks down. Read More »

Synopsis: New Constraints on Axion-Gluon Interaction Strength
Particles and Fields

Synopsis: New Constraints on Axion-Gluon Interaction Strength

An analysis of spin-precession data of atoms and neutrons sets some of the tightest limits to date on the strength of interactions between axions and gluons or nucleons. Read More »

More Articles