Synopsis: Coming off the Grid

Theorists uncover universal effects underlying computer simulations of finite volume systems.
Synopsis figure
Courtesy Sebastian König, University of Bonn

Lattice gauge theory is the art and science of simulating the dynamics of particles and fields on computers. Most lattice computations approximate continuous space and time by a lattice—or a grid—of a finite size. However, such computations often suffer from “finite volume effects,” where the results depend on the size of the grid. These effects need to be understood and separated out from the results of simulations before one can get meaningful physical answers for the continuum, infinite volume theory of interest.

Writing in Physical Review D, Shahin Bour at the University of Bonn, Germany, and collaborators show that the finite volume corrections to the energy of bound states moving in a finite periodic box have a universal character that is topological in origin, that is, they are independent of the details of the system’s geometry. These corrections contain information about the number and masses of the constituents of the bound state. Bour et al. also compute finite volume corrections to calculations of the scattering of bound states.

The authors verify their analytical results against numerical calculations using effective field theory models and find good agreement. Bour et al.’s results will be useful both for extrapolating lattice quantum chromodynamics calculations to the infinite volume limit, and studying few-body scattering in nuclear and cold atom systems. – Urs Heller and Abishek Agarwal


Features

More Features »

Announcements

More Announcements »

Subject Areas

Particles and FieldsComputational Physics

Previous Synopsis

Gravitation

Wrestling with Infinities

Read More »

Next Synopsis

Nonlinear Dynamics

You Don’t Cite Me Anymore

Read More »

Related Articles

Synopsis: Filling in a Tetraquark’s Profile
Particles and Fields

Synopsis: Filling in a Tetraquark’s Profile

An analysis of electron-positron collision data has determined the spin and parity of a particle thought to consist of four quarks. Read More »

Synopsis: Strong Force Model for Weak Force Reactions
Nuclear Physics

Synopsis: Strong Force Model for Weak Force Reactions

A quark-based model called lattice QCD provides theoretical predictions for two weak-force-driven reactions—proton fusion and tritium decay. Read More »

Synopsis: Scanning Earth’s Interior with Neutrinos
Geophysics

Synopsis: Scanning Earth’s Interior with Neutrinos

Future neutrino experiments may provide tomographic scans of Earth’s interior by viewing solar neutrinos that pass through our planet’s layers.   Read More »

More Articles