Synopsis: Gravity Finds a New Partner

A well-known model for studying magnetic phase transitions may provide a path to developing a quantum theory of gravity.
Synopsis figure
APS

The classical description of gravity fails when looking at interactions at small length scales, but developing a quantum theory for gravity has proven to be one of the most fundamental challenges in physics. For such a theory to be realistic, it needs to describe gravity in four dimensions—three spatial dimensions, plus time. But theorists can learn from simpler, three-dimensional (3D) theories. And, some of these 3D theories for gravity (those in a so-called anti-de Sitter space) can be mapped to two-dimensional conformal field theories, which can be solved. These 2D field theories are said to live at the boundary of spacetime described by the 3D theory for gravity.

Now, in a theoretical paper appearing in Physical Review D, Alejandra Castro of McGill University, Canada, and her colleagues argue that one of these dual conformal field theories is the critical Ising model in two dimensions, a well-understood model for describing magnetic phase transitions in a lattice of interacting spins. The gravity theory involved in this duality is strongly coupled, meaning quantum effects are important.

The authors compute the partition functions of the two theories with certain boundary conditions, and find that the spectra of the theories match. To fully prove this duality, Castro et al. will need to show the partition functions for each theory match for a more general set of boundary conditions. However, even at this stage, the duality sheds light on some three-dimensional gravity theories with strong coupling. – Alin Tirziu


Features

More Features »

Subject Areas

MagnetismGravitation

Previous Synopsis

Soft Matter

Slipping By

Read More »

Next Synopsis

Nonlinear Dynamics

Now Boarding All Rows

Read More »

Related Articles

Synopsis: Restricting the Fifth Force
Gravitation

Synopsis: Restricting the Fifth Force

Observations of the orbits of two stars at the center of the Milky Way constrain gravitational models involving a hypothetical fifth force. Read More »

Viewpoint: Measuring the Tidal Force on a Particle’s Matter Wave
Gravitation

Viewpoint: Measuring the Tidal Force on a Particle’s Matter Wave

The effect of the tidal force, which is directly related to the curvature of spacetime, on an individual particle’s wave function has been measured with an atom interferometer. Read More »

Synopsis: Turning up the Ringdown
Astrophysics

Synopsis: Turning up the Ringdown

Stacking up gravitational-wave “ringdown” signals from a set of black hole mergers increases the sensitivity of the signals to black hole properties. Read More »

More Articles