Synopsis: Valuable Voids

A theoretical analysis shows that measurements of the abundance of cosmic voids offer a sensitive way to study dark energy.
Synopsis figure
Volker Springel and the Virgo Consortium

Massive groups of galaxies called galaxy clusters are known to be useful for studying the Universe as a whole. Less well known is that their cosmic opposites, vast expanses of space with few galaxies, dubbed cosmic voids, are also potentially suited for the same purpose. Alice Pisani of the Institute of Astrophysics in Paris, France, and colleagues now report a theoretical analysis that may move cosmic voids to center stage. They demonstrate that measurements of the abundance of voids provide a sensitive way to study dark energy—the mysterious entity that is causing the Universe’s expansion to speed up.

Cosmologists typically assume that the density of dark energy is either constant or varies over time. These hypotheses could be distinguished by measuring parameters of the so-called equation of state, which describes the relationship between the density and pressure of dark energy. The abundance of voids as a function of void radius and redshift depends on quantities that can be described in terms of these parameters, so it could be used to place limits on them.

Pisani and colleagues set out to estimate what bounds on such parameters may be obtained from the number of voids expected to be detected by two upcoming spacecraft, ESA’s Euclid satellite and NASA’s WFIRST mission. By combining these bounds with independent constraints derived from observations of the cosmic microwave background radiation and type Ia supernovae, the researchers show that the abundance of voids can substantially shrink the limits on the parameters and thus help determine whether dark energy is constant or dynamical.

This research is published in Physical Review D.

–Ana Lopes


Features

More Features »

Announcements

More Announcements »

Subject Areas

CosmologyAstrophysics

Previous Synopsis

Next Synopsis

Atomic and Molecular Physics

The Quantum Hall Effect Leaves Flatland

Read More »

Related Articles

Synopsis: Inflation Goes Up Against the Clock
Cosmology

Synopsis: Inflation Goes Up Against the Clock

A proposed cosmological signature, called a clock signal, could provide a way to study the first ticks of cosmic time. Read More »

Synopsis: Black Hole Test for Gravity
Gravitation

Synopsis: Black Hole Test for Gravity

Researchers test a key element of the theory of gravity in the strongest gravitational field to date—that produced by the supermassive black hole at the center of the Milky Way. Read More »

Synopsis: Rocks May Hold Dark Matter Fossils
Cosmology

Synopsis: Rocks May Hold Dark Matter Fossils

If dark matter interactions occurred inside ancient rocks, they could have left detectable traces in the rocks’ crystal structure. Read More »

More Articles