Synopsis: Are eccentric cells better scouts?

A theoretical approach explores the role of shape in the ability of cells to sense environmental changes.
Synopsis figure
Credit: Carin Cain

To locate food sources or escape harmful elements, cells determine concentration gradients in the chemicals within their environment. Given their small size, cells must be able to detect a difference of a few tens of molecules across their length, making the detection process intrinsically stochastic. Within this constraint, Bo Hu and colleagues at the University of California, San Diego, develop a theoretical model to understand the role a cell’s shape plays in determining concentration gradients. Their work is presented in Physical Review E.

Hu et al. formulate the detection problem in terms of receptors on the surface of the cell that can be either bound (“on”) or unbound (“off”) to an external molecule. The probability of a receptor being on depends on the local concentration of chemicals. The team uses a statisticial approach to calculate the uncertainty in determining the two parameters that define a concentration gradient—magnitude and direction—by maximizing the likelihood of any one particular pattern of on and off receptors.

The authors find that cells can change the relative precision with which these two parameters can be estimated by adopting elliptical shapes, but they cannot improve the detection of a gradient’s direction and magnitude simultaneously. Similarly, cells can improve gradient detection in certain directions at the expense of others by, for example, increasing the density of chemical receptors at certain points on the cell surface. – Ralf Bundschuh


Features

More Features »

Announcements

More Announcements »

Subject Areas

Biological Physics

Previous Synopsis

Superconductivity

Hidden simplicity

Read More »

Next Synopsis

Quantum Information

A few good photons

Read More »

Related Articles

Focus: Probing Cell Squishiness
Mechanics

Focus: Probing Cell Squishiness

A new atomic force microscopy technique can map the elastic properties of living cells. Read More »

Synopsis: Twisting DNA Locates its Defects
Biological Physics

Synopsis: Twisting DNA Locates its Defects

Single base-pair mismatches in DNA can be pinpointed by twisting the molecule until it buckles. Read More »

Synopsis: Teaching Fish How to Swim
Fluid Dynamics

Synopsis: Teaching Fish How to Swim

A new model of swimming fish and cetaceans pinpoints the parameters that matter most for efficient motion. Read More »

More Articles