Synopsis: Nanoparticle Sifting

Nanopatterned surfaces could, according to calculations, provide a way to sort tiny particles by size.
Synopsis figure
R. Zhang and J. Koplik, Phys. Rev. E (2012)

Fabricating nanoparticles en masse is an imperfect science: some particles come out badly shaped for a given application. Researchers therefore need techniques that can quickly sort through a large number of particles and separate them according to size. In a paper appearing in Physical Review E, Rui Zhang and Joel Koplik at City College in New York have calculated the effectiveness of performing one such type of sorting that utilizes nanopatterned surfaces.

Some sorting techniques separate distinct particles in a moving fluid by forcing them to follow different trajectories because of a size- or chemical-dependent force. Zhang and Koplik consider how this could work for particles in water flowing through a long and wide channel with a specially patterned surface. In their model, the atoms in the top surface of the channel exert a repulsive force on the particles and water molecules, while the bottom surface is patterned with alternating repulsive and attractive stripes.

The team shows that when the particle-laden flow is initially directed at an oblique angle to the stripe direction, the oscillating potential provides an asymmetric background field which acts to deflect the particles away from the forcing direction. The origin of the effect is that the attractive stripes suppress the component of the particle motion out of the stripes, which alters the direction of motion. Since the deflection angle depends on the strength of the interaction it is sensitive to the nature of the particles, and varies with their size.

In addition to considering how various parameters affect this sorting mechanism, Zhang and Koplik explore the differences between stripes that exert a short-range, van der Waals force or a long-range Coulomb force on the flowing particles. – Jessica Thomas


More Features »


More Announcements »

Subject Areas

NanophysicsStatistical Physics

Previous Synopsis

Interdisciplinary Physics

Ponytail physics

Read More »

Next Synopsis

Biological Physics

Double, Double…Bubble

Read More »

Related Articles

Viewpoint: Squeezed Environment Boosts Engine Performance

Viewpoint: Squeezed Environment Boosts Engine Performance

A tiny engine can surpass the Carnot limit of efficiency when researchers engineer the thermal properties of the environment. Read More »

Synopsis: Subway Stats
Statistical Physics

Synopsis: Subway Stats

A comparison of the arrival-time statistics of New York City’s subway trains indicates that some train lines may be more efficiently run than others. Read More »

Synopsis: Transistor Breaks Law of Thermal Conductivity

Synopsis: Transistor Breaks Law of Thermal Conductivity

A single-electron transistor carries more heat than that predicted by the Wiedemann-Franz law linking thermal and electrical conductivities. Read More »

More Articles