Synopsis: Quantum Pistons

Calculations reveal the relationship between work and free energy for a quantum particle contained in a box with a moving wall.
Synopsis figure
C. Jarzynski and H. T. Quan, Phys. Rev. E (2012)

In equilibrium, the change in free energy, ΔF, of a system as it transitions between two states sets a limit on the work, W, that can be realized in the process. Theorists have searched for similar exact relations between the work done on or by a system and its change in free energy in nonequilibrium processes, and some of these relations have been verified in experiments on small, effectively classical systems, such as macromolecules.

Showing the relations are also valid in nonequilibrium quantum systems is of fundamental importance. A case in point is the “Jarzynski equality” derived by Christopher Jarzynski at the University of Maryland, College Park, which states that, classically, the statistical average of exp[-W/KBT] is equivalent to exp[-ΔF/KBT]. Whether the equality applies to a quantum piston—a quantum particle in a one-dimensional box, with one of the walls moving at a fixed velocity—has remained an open question.

Writing in Physical Review E, Jarzynski and Haitao Quan, also at the University of Maryland, utilize a solution to the time-dependent Schrödinger equation for this quantum machine that shows the Jarzynski equality is in fact satisfied. Their result is not intuitively obvious, as there are important differences between the classical and quantum pistons; for example, the work performed on a classical particle is always negative in an expanding piston, but quantum fluctuations lead to the possibility of positive work in the quantum case. – Ronald Dickman


Features

More Features »

Subject Areas

Quantum PhysicsStatistical Physics

Previous Synopsis

Biological Physics

Fractal Teeth

Read More »

Next Synopsis

Nonlinear Dynamics

Lévy Flight of the Bumblebee

Read More »

Related Articles

Viewpoint: A Toy Model for Active Interfaces
Biological Physics

Viewpoint: A Toy Model for Active Interfaces

A new statistical model predicts the evolving shape of a cellular membrane by accounting for the active feedback between the membrane and attached proteins. Read More »

Viewpoint: Watching a Quantum Magnet Grow in Ultracold Atoms
Magnetism

Viewpoint: Watching a Quantum Magnet Grow in Ultracold Atoms

Two experiments watch an antiferromagnetic phase of matter emerge in ultracold Rydberg atoms, opening up a new platform for quantum simulation. Read More »

Viewpoint: <i>PT</i> Symmetry Goes Quantum
Quantum Physics

Viewpoint: PT Symmetry Goes Quantum

A proposed microwave circuit would allow exploration of the quantum side of parity-time symmetry, which, in classical devices, gives rise to effects like one-way or stopped light. Read More »

More Articles